Monascus anka Pyruvate Decarboxylase Accounts for the New Candidate Resources of Fuel Ethanol Production

Article Preview

Abstract:

In order to study the nature and function of Pyruvate decarboxylase (PDC, E.C.4.1.1.1), which is the key enzyme to produce ethanol by fermentation; full-length cDNA library was constructed with SMART technique from Monascus anka CICC 5031. The pdc gene, including a 1713-bp open reading frame, encoding a 570 amino acid protein, was obtained by screening the constructed M. anka cDNA library. The pdc gene was successfully heterologously expressed in E.coli BL21(DE3), accounting for 32.7% of total cellular proteins. Recombinant PDC was expressed in prokaryotic cells and purified by affinity chromatography, and native PDC was extracted and purified from M. anka through Sephadex G-25 and DEAE-anion exchange resin. The enzymatic characterization of both recombinant and native PDC were studied, respectively. The specific activity of recombinant and native PDC was 20.2 and 30.11U/mg respectively. Kinetic analysis indicated that recombinant and native PDC had the same optimum conditions: pH6.0, 30°C, the Km value for pyruvate of recombinant PDC was 2.6 mmol/L and native PDC was 0.56 mmol/L. The high activity and stable PDC from M. anka accounts for the new candidate resources of fuel ethanol production.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

432-438

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.O. Ingram, T. Conway, D.P. Clark, G.W. Sewell, J.F. Preston, Appl Environ Microbiol, 53 (1987) 2420-2425.

DOI: 10.1128/aem.53.10.2420-2425.1987

Google Scholar

[2] M. Inui, H. Kawaguchi, S. Murakami, A.A. Vertes, H. Yukawa, J Mol Microbiol Biotechnol, 8 (2004) 243-254.

Google Scholar

[3] T.C. Lee, P.J. Langston-Unkefer, Plant Physiol, 79 (1985) 242-247.

Google Scholar

[4] T. Nguyen, A.M. Drotar, R.K. Monson, R. Fall, Phytochemistry, 70 (2009) 1217-1221.

Google Scholar

[5] P. Arjunan, T. Umland, F. Dyda, S. Swaminathan, W. Furey, M. Sax, B. Farrenkopf, Y. Gao, D. Zhang, F. Jordan, J Mol Biol, 256 (1996) 590-600.

DOI: 10.1006/jmbi.1996.0111

Google Scholar

[6] M.M. Bianchi, L. Tizzani, M. Destruelle, L. Frontali, M. Wesolowski-Louvel, Mol Microbiol, 19 (1996) 27-36.

DOI: 10.1046/j.1365-2958.1996.346875.x

Google Scholar

[7] R.A. Lockington, G.N. Borlace, J.M. Kelly, Gene, 191 (1997) 61-67.

Google Scholar

[8] V. Sanchis, I. Vinas, I.N. Roberts, D.J. Jeenes, A.J. Watson, D.B. Archer, FEMS Microbiol Lett, 117 (1994) 207-210.

DOI: 10.1111/j.1574-6968.1994.tb06766.x

Google Scholar

[9] J.M. Candy, R.G. Duggleby, Biochim Biophys Acta, 1385 (1998) 323-338.

Google Scholar

[10] S.J. Kaczowka, C.J. Reuter, L.A. Talarico, J.A. Maupin-Furlow, Archaea, 1 (2005) 327-334.

DOI: 10.1155/2005/325738

Google Scholar

[11] Q. Wang, P. He, D. Lu, A. Shen, N. Jiang, J Biochem, 136 (2004) 447-455.

Google Scholar

[12] L.A. Talarico, L.O. Ingram, J.A. Maupin-Furlow, Microbiology, 147 (2001) 2425-2435.

Google Scholar

[13] M.M. Bradford, Anal Biochem, 72 (1976) 248-254.

Google Scholar

[14] T. Conway, Y.A. Osman, J.I. Konnan, E.M. Hoffmann, L.O. Ingram, J Bacteriol, 169 (1987) 949-954.

DOI: 10.1128/jb.169.3.949-954.1987

Google Scholar

[15] K.C. Raj, L.A. Talarico, L.O. Ingram, J.A. Maupin-Furlow, Appl Environ Microbiol, 68 (2002) 2869-2876.

DOI: 10.1128/aem.68.6.2869-2876.2002

Google Scholar

[16] P. Holloway, R.E. Subden, Yeast, 10 (1994) 1581-1589.

Google Scholar

[17] A. Tylicki, G. Ziolkowska, A. Bolkun, M. Siemieniuk, J. Czerniecki, A. Nowakiewicz, Can J Microbiol, 54 (2008) 734-741.

DOI: 10.1139/w08-062

Google Scholar

[18] F. Krieger, M. Spinka, R. Golbik, G. Hubner, S. Konig, Eur J Biochem, 269 (2002) 3256-3263.

Google Scholar

[19] R. Sutak, J. Tachezy, J. Kulda, I. Hrdy, Antimicrob Agents Chemother, 48 (2004) 2185-2189.

DOI: 10.1128/aac.48.6.2185-2189.2004

Google Scholar

[20] S. Kutter, G. Wille, S. Relle, M.S. Weiss, G. Hubner, S. Konig, FEBS J, 273 (2006) 4199-4209.

DOI: 10.1111/j.1742-4658.2006.05415.x

Google Scholar

[21] H. Zehender, D. Trescher, J. Ullrich, Eur J Biochem, 167 (1987) 149-154.

Google Scholar