Review of Reactor and Catalyst in the Pyrolysis of Biomass for Liquid Fuels

Article Preview

Abstract:

Due to the rapid growth of energy consumption, fossil-based fuel is at the verge of extinction. Hence, the world needs new energy to substitute for the non-renewable energy resources. Various biomass resources have been discussed by virtue of the ability of generating alternative fuels, chemicals and energy-related products. To date, the utilization of biomass is mainly thermochemical conversion which involves combustion, gasification and pyrolysis. The focus, currently, is on the catalytic pyrolysis of biomass. A variety of reactors are designed and many new catalysts for the yields of liquid products and upgrading of bio-oil are investigated. Different reactors have their own unique characteristics, and fixed bed reactor is not complicated and can be controlled easily but is difficult to upsize. Fluidized bed has a good suitability for different kinds of biomass but is more complex in structure and more difficult to control. Compared with non-catalytic pyrolysis, the quality of bio-oil improves considerably in the presence of a catalyst. Different catalysts exert different effects on the upgrading of bio-oil. HZSM-5 can reduce a vast output of acid compounds and increases hydrocarbon yields. Au/Al2O3 catalyst leads to an increase of H2 yield. All the catalysts can promote the upgrading of pyrolysis products. Optimal yields and the best quality of bio-oil can be obtained by an appropriate reactor with a proper catalyst.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

552-557

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. B. Goyal, D. Seal and R.C. Saxena: Renewable and Sustainable Energy Reviews. Vol. 12 (2008), p.504

Google Scholar

[2] M. Stöcker: Angewandte Chemie International Edition. Vol. 47 (2008), p.9200

Google Scholar

[3] C. Acıkgoz, O. Onay and O. M. Kockar: Journal of Analytical and Applied Pyrolysis. Vol. 71 (2004), p.417

DOI: 10.1016/s0165-2370(03)00124-4

Google Scholar

[4] A. V. Bridgwater and G. V. C. Peacocke: Renewable and Sustainable Energy Reviews. Vol. 4 (2000), p.1

Google Scholar

[5] B. S. Kang, K. H. Lee, H. J. Park, Y. K. Park and J. S. Kim: Journal of Analytical and Applied Pyrolysis. Vol. 76 (2006), p.32

Google Scholar

[6] A. Demirbas: Energy Conversion and Management. Vol. 42 (2001), p.1357

Google Scholar

[7] N. Özbay, A. E. Pütün, B. B. Uzun and E. Pütün: Renewable Energy. Vol. 24 (2001), p.615

DOI: 10.1016/s0960-1481(01)00048-9

Google Scholar

[8] J. Wang, M. Zhang, M. Chen, F. Min, S. Zhang, Z. Ren and Y. Yan: Thermochimica Acta. Vol. 444 (2006), p.110

Google Scholar

[9] C. Couhert, J. M. Commandré and S. Salvador: Biomass and Bioenergy. Vol. 33 (2009), p.316

Google Scholar

[10] F. Ateş, E. Pütün, A. E. Pütün: Journal of Analytical and Applied Pyrolysis.Vol. 71 (2004), p.779

DOI: 10.1016/j.jaap.2003.11.001

Google Scholar

[11] E. Schröder: Journal of Analytical and Applied Pyrolysis. Vol. 71 (2004), p.669

Google Scholar

[12] Z. Luo, S. Wang, Y. Liao, J. Zhou, Y. Gu and K. Cen: Biomass and Bioenergy. Vol. 26 (2004), p.455

Google Scholar

[13] H. Y. Zhang, R. Xiao, Q. W. Pan, Q. L. Song and H. Huang: Chemical Engineering and Technology. Vol.32 (2009), p.27

Google Scholar

[14] H. Zhang, R. Xiao, D. Wang, J. Cho, G. He, S. Shao and J. Zhang: Chemical Engineering Journal. Vol.181-182 (2012), p.685

Google Scholar

[15] O. Onay and O. Kockar: Fuel. Vol. 85 (2006), p. (1921)

Google Scholar

[16] O. İ. Şenol, E. M. Ryymin, T. R. Viljava and A. O. I. Krause: Journal of Molecular Catalysis A: Chemical. Vol. 277 (2007), p.107

Google Scholar

[17] O. İ. Şenol, T. R. Viljava and A. O. I. Krause: Applied Catalysis A. Vol. 326 (2007), p.236

Google Scholar

[18] E. F. Iliopoulou, E. V. Antonakou, S. A. Karakoulia, I. A. Vasalos, A. A. Lappas and K. S. Triantafyllidis: Chemical Engineering Journal. Vol. 134 (2007), p.51

DOI: 10.1016/j.cej.2007.03.066

Google Scholar

[19] H. I. Lee, H. J. Park, Y. K. Park, J. Y. Hur, J. K. Jeon and J. M. Kim: Catalysis Today. Vol. 132 (2008), p.68

Google Scholar

[20] C. B. Lu, J. Z. Yao, W. G. Lin and W. L. Song: Chinese Chemical Letters. Vol. 18 (2007), p.445.

Google Scholar

[21] Q. Lu, Y. Zhang, Z. Tang, W. Z. Li and X. F. Zhu: Fuel. 89 (2010), p. (2096)

Google Scholar

[22] J. D. Adjaye and N. N. Bakhshi: Fuel Processing Technology. Vol. 45 (1995), p.161

Google Scholar

[23] M. I. NokkosmaÈ kia, A. O. I. Krausea and E. A. LeppaÈmaÈki: Catalysis Today. Vol. 45 (1998), p.405

Google Scholar

[24] J. Adam, E. Antonakou, A. Lappas, M. Stöcker, M. H. Nilsen, A. Bouzga, J. E. Hustad and G. Øye: Microporous and Mesoporous Materials. Vol. 96 (2006), p.93

DOI: 10.1016/j.micromeso.2006.06.021

Google Scholar

[25] A. Pattiya, J. O. Titiloye and A. V. Bridgwater: Journal of Analytical and Applied Pyrolysis. Vol. 81 (2008), p.72

Google Scholar

[26] E. Pütün: Energy. Vol. 35 (2010), p.2761

Google Scholar

[27] C. Yang, L. Jia, S. Su, Z. Tian, Q. Song, W. Fang, C. Chen and G. Liu: Bioresource Technology. (2012).

Google Scholar

[28] S. Zhang, Y. Yan, T. Li and Z. Ren: Bioresource Technology. Vol. 96 (2005), p.545

Google Scholar

[29] M. R. H. ndez, A. G. mez, A. N. Garcı´a: Applied Catalysis A: General. Vol. 317 (2007), p.183

Google Scholar

[30] X. Ying, W. Tiejun, M. Longlong, C. Guanyi: Energy Conversion and Management. 55 (2012), p.172

DOI: 10.1016/j.enconman.2011.10.016

Google Scholar

[31] J. Adam, M. Blazso, E. Meszaros, M. Stocker, M. Nilsen, A. Bouzga, J. Hustad, M. Gronli and G. Oye: Fuel. Vol. 84 (2005), p.1494

DOI: 10.1016/j.fuel.2005.02.006

Google Scholar

[32] A. A. Lappas, M. C. Samolada, D. K. Iatridis: Fuel. Vol. 81 (2002), p. (2087)

Google Scholar