Novel Clathrate Materials for Hydrogen Storage: H2 Store in N2 Hydrate

Article Preview

Abstract:

In recent years, solid clathrate gas hydrates are considered to be promising materials for hydrogen storage because they can trap molecular hydrogen within their cages formed by a hydrogen-bond water network. In this paper, we firstly synthesized the nitrogen hydrates, and then used these hydrates for hydrogen storage. The H2 storage potential in these hydrates is investigated by Raman spectrometry technique. The spectral properties show that the multiple H2 occupancies of large cages of N2 hydrates have been realized under mild condition (16 MPa and 255 K) when exposing N2 hydrates in pressurized H2 gas. The results suggest that nitrogen clathrate hydrates are prospective media for H2 storage and may help to design and produce new hydrogen storage materials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 512-515)

Pages:

957-960

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. D. Sloan. Clathrate Hydrates of Natural Gases, 2nd ed, Marcel Dekker: New York, (1998).

Google Scholar

[2] N. I. Papadimitriou, I. N. Tsimpanogiannis, A. Th. Papaioannou, and A. K. Stubos. J. Phys. Chem.C Vol. 112 (2008), p.10294

Google Scholar

[3] G. D. Holder, J. L. Stephenson, J. J. Joyce, V. T. John, V. A. Kamath and S. Malekar. Ind. Eng. Chem. Proc. Des. Dev. Vol. 22 (1983), p.170

DOI: 10.1021/i200020a029

Google Scholar

[4] W. L. Mao, H. K. Mao, A. F. Goncharov, V. V. Struzhkin, Q. Guo, J. Hu, J. Shu, R. J. Hemley, M. Somayazulu, Y. Zhao. Science Vol. 297 (2002) , p.2247

DOI: 10.1126/science.1075394

Google Scholar

[5] T. A. Strobel, C. A. Koh and E. D. Sloan. Fluid Phase Equilib. Vol. 261(2007), p.382.

Google Scholar

[6] T. A. Strobel, K. C. Hester, E. D. Sloan and C. A. Koh. J. Am. Chem. Soc. Vol. 129( 2007), p:9544

Google Scholar

[7] L. J. Florusse, C. J. Peters, J. Schoonman, K. C. Hester, C. A. Koh, S. F. Dec, K. N. Marsh and E. D.Sloan. Science Vol. 306 (2004), p.469

DOI: 10.1126/science.1102076

Google Scholar

[8] K. Udachin, J. Lipkowski and M. Tzacz. Supramol. Chem. Vol. 3 (1993), p.181

Google Scholar

[9] T. A.Strobel, C. J. Taylor, K. C. Hester, S. F. Dec, C. A. Koh, K. T. Miller and E. D. Sloan. J. Phys. Chem. B Vol. 110 (2006), p.17121

Google Scholar

[10] K. C. Hester, T. A.Strobel, E. D. Sloan and C. A. Koh. J. Phys. Chem. B Vol. 110(2006), p.14024

Google Scholar

[11] H. Lee, J.w. Lee, D. Y. Kim, Y. Park, Y.T. Seo, H. Zeng, I. L. Moudrakovski, C. I. Ratcliffe and J. A. Ripmeester. Nature Vol. 434 (2005), p.743

DOI: 10.1038/nature03457

Google Scholar

[12] R. Anderson, A. Chapoy and B. Tohidi. Langmuir Vol. 23 (2007), p.3440

Google Scholar

[13] S. Hashimoto, T. Sugahara, H. Sato and K. Ohgaki. J. Chem. Eng. Data Vol. 52 (2007), p.517

Google Scholar

[14] S. Hashimoto, S. Murayama, T. Sugahara, H. Sato and K. Ohgaki. Chem. Eng. Sci. Vol. 61 (2006), p.7884

Google Scholar

[15] K.A. Lokshin, Y. Zhao, D. He, W.L. Mao, H.-K. Mao, R.J. Hemley, M.V. Lobanov, M. Greenblatt. Phys. Rev. Lett. Vol. 93 (2004) , p.125503.

Google Scholar