[1]
Davis SJ (2002) Photoperiodism: The Coincidental Perception of the Season. Current Biology Vol. 12: R841–R843
DOI: 10.1016/s0960-9822(02)01348-9
Google Scholar
[2]
Jackson SD, Plant responses to photoperiod. New Phytologist (2009)181: 517–531
Google Scholar
[3]
Kikuchi R and Handa H. Photoperiodic control of flowering in barley Breeding Science (2009)59: 546–552
DOI: 10.1270/jsbbs.59.546
Google Scholar
[4]
Hempel, F. D. and Feldman, LJ (1994) Bi-directional inflorescence development in Arabidopsis thaliana: Acropetal initiation of flowers and basipetal initiation of paraclades. Planta 192 : 276-286.
DOI: 10.1007/bf00194463
Google Scholar
[5]
Coen ES, Romero JM, Doyle S, Elliot R, Murphy G., and Carpenter R (1990) Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63 (6): 1311-1322
DOI: 10.1016/0092-8674(90)90426-f
Google Scholar
[6]
Weigel D, Alvarez J, Smyth DR, Yanofsky MF, and Meyerowitz EM (1992) LFY controls floral meristem identity in Arabidopsis. Cell (5): 843-859
DOI: 10.1016/0092-8674(92)90295-n
Google Scholar
[7]
Yanofsky M (1995) Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development. Annu. Rev. Plant Physiol. Pl
DOI: 10.1146/annurev.pp.46.060195.001123
Google Scholar
[8]
Mandel MA., Gustafson-Brown C, Savidge B and Yanofsky MF(1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277.
DOI: 10.1038/360273a0
Google Scholar
[9]
Weigel D and Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature, 377: 495-500.
DOI: 10.1038/377495a0
Google Scholar
[10]
Blázquez, M., Soowal, L., Lee I. and Weigel, D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124, 3835-3844.
DOI: 10.1242/dev.124.19.3835
Google Scholar
[11]
Weigel D, and Coupland G ( 1995) LFY blooms in aspen. Nature, 377: 482-483
Google Scholar
[12]
Ahearn KP, Johnson HA, Weigel D, and Wagner DR (2001) NFL1, a Nicotiana tabacum LFY-like gene, controls meristem initiation and floral structure. Plant Cell Physiol 42(10): 1130-1139
DOI: 10.1093/pcp/pce143
Google Scholar
[13]
He Z, Zhu Q, Dabi T, Li D, Weigel D, and Lamb CJ (2000) Transformation of rice with the Arabidopsis floral regulator LFY causes early heading. Transgenic Res 9: 223-227
DOI: 10.1023/a:1008992719010
Google Scholar
[14]
Pena L, Martin-Trillo M, Juarez J, Pina JA., Navarro L, and Martinez-Zapater JM (2001) Constitutive expression of Arabidopsis LFY or APETALA1 genes in citrus reduces their generation time. Nat Biotech l (19): 263-267
DOI: 10.1038/85719
Google Scholar
[15]
Mandel MA. and Yanofsky MF(1995) A gene triggering flower development in Arabidopsis. Nature 377: 522-524.
DOI: 10.1038/377522a0
Google Scholar
[16]
Simon R., Igeño M I and Coupland G (1996) Activation of floral meristem identity genes in Arabidopsis. Nature 384: 59-62..
DOI: 10.1038/384059a0
Google Scholar
[17]
Frohlich MW, Parker DS (2000) The mostly male theory of flower evolutionary origins: from genes to fossils Systematic Botany 25, 155–171.
DOI: 10.2307/2666635
Google Scholar
[18]
Kelly A, Bonnlander M, Meeks-Wagner D(1995) NFL, the tobacco homologue of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. The Plant Cell 7, 225–234
DOI: 10.1105/tpc.7.2.225
Google Scholar
[19]
Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996a) Control of inflorescence architecture in Antirrhinum. Nature 379, 791–797.
DOI: 10.1038/379791a0
Google Scholar
[20]
Gocal GFW, King RW, Blundell CA, Schwartz OM, Andersen CH, Weigel D (2001) Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiology 125, 1788–1801.
DOI: 10.1104/pp.125.4.1788
Google Scholar
[21]
Veit J, Wagner E, Albrechtova JTP(2004)Isolation of a FLORICAULA/LEAFY putative orthologue from Chenopodium rubrum and its expression during photoperiodic flower induction. Plant physiology and biochemistry, 42:573-578
DOI: 10.1016/j.plaphy.2004.06.008
Google Scholar
[22]
Allnutt GV, Hilary Joan Rogers HG, Francis D and Herbert RJ(2007) A LEAFY-like gene in the long-day plant, Silene coelirosa is dramatically up-regulated in evoked shoot apical meristems but does not complement the Arabidopsis lfy mutant. Journal of Experimental Botany, 58(8), 2249–2259
DOI: 10.1093/jxb/erm090
Google Scholar
[23]
Ma YP, Fang YH, Chen F, Dai SL (2008) DFL, a FLORICAULA/LEAFY homologue gene from Dendranthema lavandulifolium is expressed both in the vegetative and reproductive tissues. Plant Cell Rep 27: 647-654
DOI: 10.1007/s00299-007-0489-2
Google Scholar
[24]
Wang WK, Dai SL, Li MX (2002) Physical mapping of rDNA in Dendranthema nankingensi and its close related species by Florecent in situ hybridization. Cellular & Molecular Biology Letters (7): 911~914.
Google Scholar
[25]
Dai SL,Wang WK,Li MX,Xu YX (2005) Phylogenentic relationship of Dendranthema Spp. revealed by fluorescent in situ hybridization. J Integ Plant Biol 47:783-791
DOI: 10.1111/j.1744-7909.2005.00068.x
Google Scholar
[26]
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-Ct method. Methods 25:402–408
DOI: 10.1006/meth.2001.1262
Google Scholar
[27]
Franco-Zorrilla J, Fernandez-Calvin B, Madueno F, Cruz-Alvarez M, Salinas J, Martinez-Zapater J(1999) Identification of genes specifically expressed in cauliflower reproductive meristems: molecular characterization of BoREM. Plant Molecular Biology 39, 427–436
DOI: 10.1023/a:1006130629100
Google Scholar
[28]
Bradley D, Vincent C, Carpenter R, Coen E (1996b) Pathways for inflorescence and floral induction in Antirrhinum. Development 122, 1535–1544.
DOI: 10.1242/dev.122.5.1535
Google Scholar