Bioremediation Condition Optimization of Hydrocarbon in Soil Using Response Surface Methodology by Microbial Consortium KL9-1

Article Preview

Abstract:

A response surface methodology was applied to optimize the bioremediation condition of hydrocarbon in soil by microbial consortium KL9-1. A four-level Box-Behnken factorial design was employed to study the relationship of independent variables and dependent variable by applying pH value, inoculation amount of microbial consortium KL9-1, ratio of nitrogen and phosphorus (N/P ) and surfactant (SDBS) concentration as independent variables (factors) and crude oil removal rate as dependent variable (response). Then the statistically significant model was obtained and numerical optimization based on desirability function was carried out for pH 7.0, inoculation amount 50.0 mL, N/P 2: 1 and SDBS concentration 4.0 g, and the hydrocarbon removal rate reached as high as 52.58%. The predictive values showed good agreement with the experimental values under the optimization conditions, by standard variance <1.3%. It showed that the optimal result was reliable.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

2073-2078

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.L. Liu, Y.M. Su, S.M. Gu, H.G. Song, G.W. Yan, and W.Y. Yu: Chemistry & Bioengineering. Vol. 25 (2008) , p.1 (In Chinese)

Google Scholar

[2] I.J. Díaz-Ramírez, H. Ramírez-Saad, M. Gutiérrez-Rojas and E. Favela-Torres: Can. J. Microbiol. vol. 49 (2004) . p.755

Google Scholar

[3] K.S.M. Rahman, J. Thahira-Rahman, P. Lakshmanaperumalsamy, and I.M. Banat: Bioresource Technol. vol. 85(2002), p.257

DOI: 10.1016/s0960-8524(02)00119-0

Google Scholar

[4] Y.S. Hii, A.T. Lawa, N.A.M. Shazili, M.K. Abdul-Rashid and C.W. Lee: Int. Biodeterior. Biodegrad. vol. 63(2009), p.142

Google Scholar

[5] J.D. Desai and I.M. Banat: Microbiol. Mol. Biol. R. vol.61 (1997) , p.47

Google Scholar

[6] E.Z. Ron and E. Rosenberg: Curr. Opin. Biotechnol. Vol. 13 (2002) , p.249

Google Scholar

[7] S.V. Mohan, B.P. Reddy and P.N. Sarma: Bioresour. Technol. Vol. 100 (2009) , p.164

Google Scholar

[8] L. Huang, T. Mab, D. Li, F. Liang, R. Liu and G. Li: Mar. Pollut. Bull. Vol. 56 (2008) , p.1714

Google Scholar

[9] F. Rigas, K. Papadopoulou, V. Dritsa and D. Doulia: J. Hazard. Vol. 140 (2007) , p.325

Google Scholar

[10] D.M. Pala, D.D. Carvalho, J.C. Pinto and G.L. Sant'Anna Jr: Int. Biodeterior. Biodegrad. vol. 58(2006), p.254

Google Scholar

[11] M. Ahmadi, F. Vahabzadeh, B. Bonakdarpour, E. Mofarrah and M. Mehranian: J. Hazard. Vol. 123 (2005) , p.187

Google Scholar

[12] V. Andreoni, L. Cavalca, M. A. Rao, G. Nocerino, S. Bernasconi, E. Dell-Amico, M. Colombo and L. Gianfreda: Chemosphere. Vol. 57 (2004) , p.401

DOI: 10.1016/j.chemosphere.2004.06.013

Google Scholar

[13] X.M. Yang and W.W. Wu: Environmental Monitoring in China. Vol. 20 (2004) , p.37 (In Chinese)

Google Scholar

[14] G.E.P. Box and E.W. Behnkin: Technometrics. Vol. 2 (1960) , p.2455

Google Scholar

[15] R.V. Muralidhar, R.R. Chirumamila and R. Marchant: Biochem. Eng. J. Vol. 9 (2001) , p.17

Google Scholar