Effects of Anolyte Concentration on Removal of Fluorine from Contaminated Soil by Electrokinetic Treatment

Article Preview

Abstract:

A series of electrokinetic experiments were conducted on fluorine-contaminated soil with different anolyte (NaOH) concentrations in a self-made electrolyzer to investigate the effects of anolyte concentration on removal of fluorine. Experimental results showed that anolyte concentration (0.1mol L-1) was more suitable of the six anolyte concentration tested, in contrast to the removal efficiency of fluorine and the cost of the high concentration of anolyte. On this anolyte concentration that 57.75% fluorine could be removed from contaminated soil within 10 days under the applied voltage (1.0 V cm-1). The results also indicated that electromigration was a dominant transport mechanism responsible for the removal of fluorine from contaminated soil than electroosmosis.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

2500-2504

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K.M. Arnesen and T. Krogstad: Water. Air. Soil. Pollut. Vol. 103(1998), pp.357-373

Google Scholar

[2] M. Egli, S. Durrenberger and P. Fitze: Environ. Pollut. Vol. 129(2004), pp.195-207

Google Scholar

[3] S.K. Jha, A.K. Nayak, Y.K. Sharma, V.K. Mishra and D.K. Sharma: Bull. Environ. Contam. Toxicol. Vol. 80(2008), pp.369-373

Google Scholar

[4] K. Baek, D.H. Kim, S.W. Park, B.G. Ryu, T. Bajargal and J.S. Yang: J. Hazard. Mater. Vol. 161(2009), pp.457-462

Google Scholar

[5] A.T. Yeung: Environ. Eng. Sci. Vol. 23(2006), pp.202-224

Google Scholar

[6] V. Jurate, S. Mika and L. Petri: Sci. Total. Environ. Vol. 289(2002), pp.97-121

Google Scholar

[7] P. Zhang, C. Jin, Z. Zhao and G. Tian: J. Hazard. Mater. Vol. 177(2010), pp.1126-1133

Google Scholar

[8] J.W. Ma, F.Y. Wang, Z.H. Huang and H. Wang: J. Hazard. Mater. Vol. 176(2010), pp.715-720

Google Scholar

[9] M. Pazos, C. Cameselle and M.A. Sanromán: Environ. Eng. Sci. Vol. 4(2008), pp.419-428

Google Scholar

[10] D.H. Kim, C.S. Jeon, K. Baek, S.H. Ko and J.S. Yang: J. Hazard. Mater. Vol. 161(2009), pp.565-569

Google Scholar

[11] N. Costarramone, S. Tellier, M. Astruc, B. Grano and D. Lecomte: Waste. Manag. Res. Vol. 16(1998) pp.555-563

DOI: 10.1177/0734242x9801600606

Google Scholar

[12] W.W. Wenzel and W.E.H. Blum: Soil. Sci. Vol. 153(1992), pp.357-364

Google Scholar

[13] N.R. Mcquaker and M. Gurney: Anal. Chem. Vol. 49(1977), pp.53-56

Google Scholar

[14] A.Z. Al-hamdan and K.R. Reddy: Chemosphere Vol. 71(2008), pp.860-871

Google Scholar

[15] Y.B. Acar and A.N. Alshawabkeh: Environ. Sci. Technol. Vol. 27(1993) pp.2638-2647

Google Scholar

[16] C.Yuan and T.S. Chiang: J. Hazard. Mater. Vol. 152(2008), pp.309-315

Google Scholar

[17] G.C.C. Yang and S.L. Lin: J. Hazard. Mater. Vol. 58(1998), pp.285-299

Google Scholar

[18] N. Costarramone, S. Tellier, B. Grano, D. Lecomte and M. Astruc: Environ. Technol. Vol. 21(2000), pp.789-798

DOI: 10.1080/09593330.2000.9618965

Google Scholar