The Synthesis and Characterization of the Graphene Oxide-Polyamine Composites Using for the Recovery of Heavy Metal Ions

Article Preview

Abstract:

Graphene oxide–polyamine composites have been synthesized which have metal ion capacities as high as 97.94% for cadmium ions removed from aqueous solutions. The chemical structure of obtained graphene oxide–polyamine composites was confirmed by FT-IR, XRD and SEM. The results revealed that these composites can effectively extract heavy metal ions from waste water. Using these composites the concentration of heavy metal ions is reduced to below allowable discharge limits and the recovery of heavy metal ions from waste water was realized.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

2935-2938

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A.K. Geim, K.S. Novoselov. Nat Mater 2007,6:183–191.

Google Scholar

[2] K.S. Novoselov, A.K. Geim, S.V. Morozov, et al. Science 2004, 306: 666.

Google Scholar

[3] C.Soldano, A.Mahmood, E.Dujardin. Carbon 2010,48:21-27.

Google Scholar

[4] H.L. Wang, Q.L. Hao, X.J. Yang, et al. Electrochem Commun 2009, 11(6):1158.

Google Scholar

[5] C.N.R. Rao, K. Biswas, K.S. Subrahmanyam, A.Govindaraj. J Mater Chem 2009,19:2457.

Google Scholar

[6] H.K.He, C. Gao. Chem Mater 2010, 22:5054.

Google Scholar

[7] B. C. Brodie, Ann. Chim. Phys. 1855,45:351.

Google Scholar

[8] L.Staudenmaier, D.Ber. Chem. Ges. 1898,31:1484.

Google Scholar

[9] W. S. Hummers, R. E.Offeman. J. Am.Chem.Soc. 1958,80:1339.

Google Scholar

[10] R.Verdejo, M.M. Bernal, L.J. Romasanta, M.A. Lopez-Manchado. J Mater Chem 2011,21:3301.

DOI: 10.1039/c0jm02708a

Google Scholar

[11] T.Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso,R.D Piner, D.H. Adamson, H.C. Schniepp. Nat Nanotechnol 2008,3:327.

DOI: 10.1038/nnano.2008.96

Google Scholar

[12] J.P. Rourke, P.A. Pandey, J.J. Moore, M. Bates, I.A. Kinloch, R.J. Young, N.R. Wilson. Angew Chem Int Ed 2011,50(14):3173.

DOI: 10.1002/anie.201007520

Google Scholar

[13] A. Gupta, E. F. Johnson, R. H. Schlossel, Ind. Eng. Chem.Res. 1987,26, 588–594.

Google Scholar

[14] S. T. Beatty, R. J. Fischer, E. Rosenberg, D. Pang, Sep. Sci. Technol. 1999,34, 2723–2739.

Google Scholar

[15] G.D. Del-Cul L.M. Toth W.D. Bond G.D. Davis, S. Dai, Sep. Sci.Technol. 1997, 32, 431–446.

Google Scholar

[16] S. T. Beatty, R. J. Fischer, D. Pang, E. Rosenberg, Sep. Sci. Technol. 1999,34, 2721–2737.

Google Scholar

[17] S.T. Beatty, R. J. Fischer, D.L. Hagers, E.Rosenberg. Ind. Eng. Chem. Res. 1999, 38, 4402-4408.

Google Scholar

[18] D. C. Marcano,D. V. Kosynkin,J. M. Berlin, A. Sinitskii, Z. Z. Sun, A. Slesarev. ACS Nano 2010,4 (8) : 4806.

DOI: 10.1021/nn1006368

Google Scholar

[19] R. L.Jay, D. D. Condell, V. K.Dmitry, J. Am. Chem. Soc. 2008, 130 , 16201.

Google Scholar

[20] T.Szabo, O. Berkesi, I. Dekany, Carbon. 2005, 43, 3186.

Google Scholar

[21] C. Xu, X. Wu, J. Zhu, X.Wang. Carbon, 2007, 46, 386.

Google Scholar

[22] Y. Matsuo, Y. Nishino, T. Fukutsuka, Y. Sugie. Carbon. 2007, 45, 1384.

Google Scholar

[23] D. A.Dikin, S. Stankovich, E. J. Zimney, et al. Nature. 2007, 448, 457.

Google Scholar