Total and Efficient Removal of Tribromoacetic Acid by Ultraviolet Irradiation

Article Preview

Abstract:

Tribromoacetic acid (TBAA), one of the typically recalcitrant and toxic chlorine disinfection byproducts (DBPs), is widespread in the drinking water and threating human health. The environment-friendly technology, UV irradiation, could efficiently destruct TBAA. The present study investigated the removal efficiency, photodegradation kinetics, and photodegradation mechanism of TBAA under UV irradiation. It revealed that the photodegradaton process of TBAA agreed well with the pseudo-first order kinetics, with the rate constant of 1.084 min-1 and half-time of 0.64 minutes. Further study on intermediate products formation and mass balance indicated that complete debromination and detoxification were obtained with almost all the bromine atoms released as bromide ions, and suggest that the cleavage of three C-Br bonds concurrently occurred during the photolysis of one TBAA molecule. It will provide some guidance for efficient treatment of brominated contaminants in water.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

2939-2943

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. L. Sedlak, U. von Gunten: Science Vol.331 (2011), p.42

Google Scholar

[2] S. W. Krasner, P. Westerhoff, B. Y. Chen, B. E. Rittmann, G. Amy: Environ. Sci. Technol. Vol. 43 (2009), p.8320

Google Scholar

[3] S. D. Richardson, M. J. Plewa, E. D.Wagner, R. Schoeny, D. M. DeMarini: Mutat. Res. - Rev. Mut. Res. Vol. 636 (2007), p.178

Google Scholar

[4] W. A. Mitch, D. L. Sedlak: Environ. Sci. Technol. Vol. 36 (2002), p.588

Google Scholar

[5] F. Qin, Y.-Y. Zhao, Y. Zhao, J. M. Boyd,; W. Zhou, X.-F. Li: Angew. Chem. Int. Ed. Vol. 49 (2010),p.790

Google Scholar

[6] M. J. Plewa, M. G. Muellner, S. D. Richardson, F. Fasanot, K. M. Buettner, Y. T. Woo, A. B. Mckague, E. D. Wagner: Environ. Sci. Technol. Vol. 42 (2008), p.955

Google Scholar

[7] P. Zhang, T. M. Lapara, E. H. Goslan, Y. F. Xie, S. A. Parsons, R. M. Hozalski: Environ. Sci. Technol. Vol.43 (2009), p.3169

DOI: 10.1021/es802990e

Google Scholar

[8] D. Minakata, W. Song, J. Crittenden: Environ. Sci. Technol. Vol.45 (2011), p.6057

Google Scholar

[9] C. H. Jo, A. M. Dietrich, J. M. Tanko: Water Res. Vol. 45 (2011), p.2507

Google Scholar

[10] L. Zhang, W. A. Arnold, R. M. Hozalski: Environ. Sci. Technol. Vol. 38 (2004), p.6881

Google Scholar

[11] X. Q.Li, D. W. Elliott, W. X. Zhang: Crit. Rev. Solid State Mater. Sci. Vol. 31 (2006), p.111

Google Scholar

[12] A. Nel, T. Xia,; L. Madler, N. Li: Science Vol. 311 (2006), p.622

Google Scholar

[13] W. A. M. Hijnen, E. F. Beerendonk, G. J. Medema: Water Res. Vol. 40 (2006), p.3

Google Scholar

[14] R. O. Rahn: Photochem. Photobiol. Vol. 66 (1997), p.450

Google Scholar

[15] N. V. Klassen, D. Marchington, H. C. E. McGowan: Anal. Chem. Vol. 66 (1994), p.2921

Google Scholar

[16] B. Chen, W. Lee, P. K. Westerhoff, S. W. Krasner, P. Herckes: Water Res. Vol. 44 (2010), p.3401.

Google Scholar