Co-Pyrolysis Kinetics of Expandable Polystyrene Foam Plastics and Biomass

Article Preview

Abstract:

Based on the thermogravimetric analysis, co-pyrolysis of expandable polystyrene foam plastics (EPS) and three kinds of biomass (bagasse, peanut shell, corncob) were investigated. The result shows that synergistic effects of the co-pyrolysis of EPS/bagasse and EPS/corncob are obvious, but there is no remarkable synergistic effect for the EPS and peanut shell blends. The kinetic analysis indicates that the pyrolysis processes can be described as first order reactions model, a pretty good fitting of experimental data was obtained for all samples. In the EPS and the biomass pyrolysis, respectively, the former can be described as the one first-order reaction model, and the latter can be described as the three consecutive models, while the co-pyrolysis of EPS and biomass needs to be described as the four consecutive models.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

3295-3301

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. G. B.Derraik: Marine Pollution Bulletin, 2002, 44(9): 842-852.

Google Scholar

[2] R. Xu, L. Ferrante, C Briens, et al: Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 263-272.

Google Scholar

[3] R. Vasudevan, A. Ramalinga Chandra Sekara, B. Sundarakannan, et al: Construction and Building Materials, 2012, 28: 311–320.

DOI: 10.1016/j.conbuildmat.2011.08.031

Google Scholar

[4] Huiting Shent, R.J. Pugh and E. Forssberg: Resources, Conservation and Recycling, 1999, 25: 85–109.

DOI: 10.1016/s0921-3449(98)00017-2

Google Scholar

[5] A. A. Shah, F. Hasan, A. Hameed, et al: Biotechnology Advances, 2008, 26(3): 246-265.

Google Scholar

[6] C.Zarfl and M. Matthies: Marine Pollution Bulletin, 2010, 60(10): 1810-1814.

Google Scholar

[7] R. Siddique, J. Khatib and I. Kaur: Waste Management, 2008, 28(10): 1835-1852.

Google Scholar

[8] R. S. Chauhan, S. Gopinath, P. Razdan, et al: Waste Management, 2008, 28(11): 2140-2145.

Google Scholar

[9] A. Kan and R. Demirboga: Journal of Materials Processing Technology, 2009, 209(6): 2994-3000.

Google Scholar

[10] F. Abnisa, W. M. A. W. Daud, W. N. W. Husin, et al: Biomass & Bioenergy, 2011, 35(5): 1863-1872.

Google Scholar

[11] Y. F. Huang, W. H. Kuan, P. T. Chiueh, et al: Bioresource Technology, 2011, 102(19): 9241-9246.

Google Scholar

[12] N. Marin, S. Collura, V. I. Sharypov, et al: Journal of Analytical and Applied Pyrolysis, 2002, 65(1): 41-55.

Google Scholar

[13] V. I. Sharypov, N. G. Beregovtsova, B. N. Kuznetsov, et al: Journal of Analytical and Applied Pyrolysis, 2003, 67(2): 325-340.

Google Scholar

[14] V. I. Sharypov, N. Marin, N. G. Beregovtsova, et al: Journal of Analytical and Applied Pyrolysis, 2002, 64(1): 15-28.

Google Scholar

[15] F. Paradela, F. Pinto, A. M. Ramos, et al: Journal of Analytical and Applied Pyrolysis, 2009, 85(1-2): 392-398.

Google Scholar

[16] Y. L. Sun, Z. B. Zhu and S. Y. Zhu: Jiang Xi Energy, 2009, 1: 11-15. (in Chinese)

Google Scholar

[17] X. Shen, in: DTA, TGA and Non-isothermal Solid-phase Reaction Kinetics edited by Y. Q. Qing, Metallurgical Industry Press, 1995. (in Chinese)

Google Scholar

[18] Q. Yang, S. B. Wu, R. Lou, et al: Journal of Analytical and Applied Pyrolysis, 2010, 87(1): 65-69.

Google Scholar

[19] M. Gronli, M. J. Antal and G. Varhegyi: Industrial & Engineering Chemistry Research, 1999, 36(6): 2238-2244.

Google Scholar

[20] P. Kannan, J. J. Biernacki, D. P. Visco, et al: Journal of Analytical and Applied Pyrolysis, 2009, 84(2): 139-144.

Google Scholar

[21] J. E. White, W. J. Catallo and B. L. Legendre: Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 1-33.

Google Scholar

[22] Y. F. Huang, W. H. Kuan, P. T. Chiueh, et al: Bioresource Technology, 2011, 102(3): 3527-3534.

Google Scholar