A Model for Characterizing the Process of Activated Sludge Compression Settling

Article Preview

Abstract:

Based on batch settling tests, a model describing the compression settling stage was developed and validated by experimental data. A equation determining the critical point when the compression settling stage commences, and a new velocity function for compression settling process were deduced from the model. It was shown that compression settling velocity, time and sludge concentration of the critical point occurrence depend on the initial sludge concentrations, the initial sludge blanket height and the sludge characteristic. Dividing the entire settling process of activated sludge into the zone settling and compression settling stages, and describing them by respective velocity models was more reasonable for characterizing the entire settling behaviour of activated sludge. The method was applied to predict the sludge blanket height during batch settling tests, and the results showed that the settling processes could be simulated well.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

3680-3686

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.J. Kynch: Trans. Farad. Soc., Vol. 148 (1952), p.166.

Google Scholar

[2] P.A. Vesilind: Water and Sewage Works, Vol. 115 (1968), p.302.

Google Scholar

[3] R.I. Dick and K.W. Young: Proc. 27th Industrial Waste Conf. (Purdue University, USA 1972).

Google Scholar

[4] E.V. Vaerenbergh: Trib. Cebedeau, Vol. 33 (1980), p.369.

Google Scholar

[5] S.H. Cho, F. Colin, M. Sardin and C. Prost: Water Res., Vol. 27 (1993), p.1237

Google Scholar

[6] A.R. Pitman: Water Sci. Technol., Vol. 17 (1984), p.493.

Google Scholar

[7] G.A. Ekama and G.R.: J. Water Pollut. Contr. Fed.,Vol. 85 (1986), p.101.

Google Scholar

[8] E.J. Wahlberg and T.M. Keinath: J. Water Pollut. Contr. Fed., Vol. 60 (1988), p.2095.

Google Scholar

[9] G.T. Daigge: Water Environ. Res., Vol. 67 (1995), p.95.

Google Scholar

[10] D.L. Giokas, G.T. Daigger, M. von Sperling, Y. Kim and P.A. Paraskevas: Water Res., Vol. 37 (2003), p.3821.

Google Scholar

[11] I. Takács, G.G. Patry and D. Nolasco: Water Res., Vol. 25 (1991), p.1263.

Google Scholar

[12] R. Dupont and C. Dahl: Water Sci. Technol., Vol. 31 (1995), p.215.

Google Scholar

[13] R. Dupont and M. Henze: Water Sci. Technol., Vol. 25 (1992), p.285.

Google Scholar

[14] R. Otterpohl and M. Freund: Water Sci. Technol., Vol. 26 (1992), p.1391.

Google Scholar

[15] D.A. Lyn, A.I. Stamou and W. Rodi: J. Hydrol. Eng., Vol. 118 (1992), p.849.

Google Scholar

[16] G. Mazzolani, F. Pirozzi and G. d'Antonoi: Water Sci. Technol., Vol. 38 (1998), p.95.

Google Scholar

[17] G.A, Ekama, J.L. Barnard, F.W. Günthert, J.A. McCorquodale, D.S. Parker and E.J. Wahlberg: Secondary Settling Tanks: Theory, Modelling, Design and Operation (IAWQ Scientific and Technical reports, no. 6, England 1997).

Google Scholar

[18] J. De Clercq, M. Devisscher, I. Boonen, J. Defrancq and P.A. Vanrolleghem: J. Chem. Technol. Biotechnol., Vol. 80 (2005), p.523.

DOI: 10.1002/jctb.1213

Google Scholar

[19] L. Härtel and H.J. Pöpel: Water Sci. Technol., Vol. 25 (1992), p.267.

Google Scholar

[20] S. Zhou, J.A. McCorquodale and Z. Vitasovic: J. Environ. Eng. ASCE, Vol. 118 (1992), p.829.

Google Scholar

[21] S. Zhou and J.A. McCorquodale: J. Environ. Eng. ASCE, Vol. 118 (1992), p.1391.

Google Scholar

[22] L. Szalai, P. Krebs and W. Rodi: J. Hydraul. Eng. ASCE, Vol. 120 (1994), p.4.

Google Scholar

[23] Z. Vitasovic, S. Zhou, J.A. McCorquodale and K. Lingren: Water Environ. Res., Vol. 69 (1997), p.999.

Google Scholar

[24] M. Pérez, R. Font and C. Pastor: Comput. Chem. Eng., Vol. 22 (1998), p.1531.

Google Scholar

[25] J.R. Karl and S.A. Wells: J. Environ. Eng. ASCE, Vol. 125 (1999), p.792.

Google Scholar

[26] M. Armbruster, P. Krebs and W. Rodi: Water Sci. Technol., Vol. 43 (2001), p.173.

Google Scholar

[27] J. De Clercq: Batch and continuous settling of activated sludge: in-depth monitoring and 1D compression Modelling (Ph.D., University Ghent, Belgium, 2006).

Google Scholar

[28] D. Lakehal, P. Krebs, J. Krijgsman and W. Rodi: J. Hydraul. Eng. ASCE, Vol. 125 (1999), p.253.

Google Scholar

[29] Y. Jin, Q. Guo and T. Viraraghavan: J. Environ. Eng., Vol. 126 (2000), p.754.

Google Scholar

[30] D. Lakehal: Int. J. Multiphase Flow, Vol. 28 (2002), p.823.

Google Scholar

[31] Standard Methods for the examination of water and wastewater (20th Edition, USA 1998).

Google Scholar

[32] P.A. Vanrolleghem, D. Van der Schueren, G. Krikilion, K. Grijspeerdt, P. Willems and W. Verstraete: Water Sci. Technol., Vol. 33 (1996), p.37.

DOI: 10.2166/wst.1996.0004

Google Scholar

[33] D. Zhang, Z. Li, P. Lu, T. Zhang and D. Xu: Water Res., Vol. 40 (2006), p.2637.

Google Scholar

[34] M. Vanderhasselt and P.A. Vanrolleghem: Water Res., Vol. 34 (2000), p.395.

Google Scholar