[1]
Demirbas, A. (2004). "Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues." Journal of Analytical and Applied Pyrolysis 72(2): 243-248.
DOI: 10.1016/j.jaap.2004.07.003
Google Scholar
[2]
Ioannidou, O. and A. Zabaniotou (2007). "Agricultural residues as precursors for activated carbon production--A review." Renewable and Sustainable Energy Reviews 11(9): 1966-2005.
DOI: 10.1016/j.rser.2006.03.013
Google Scholar
[3]
Chan, K. Y., L. Van Zwieten, et al. (2007). "Agronomic values of green waste biochar as a soil amendment." Soil Research 45(8): 629-634.
DOI: 10.1071/sr07109
Google Scholar
[4]
Lima, I. M., A. McAloon, et al. (2008). "Activated carbon from broiler litter: Process description and cost of production." Biomass and Bioenergy 32(6): 568-572.
DOI: 10.1016/j.biombioe.2007.11.008
Google Scholar
[5]
Chan, K. Y., L. Van Zwieten, et al. (2008). "Using poultry litter biochars as soil amendments." Soil Research 46(5): 437-444.
DOI: 10.1071/sr08036
Google Scholar
[6]
Lehmann, J., Joseph, S., 2009. Biochar for environmental management: an introduction. In: Lehmann, J., Joseph, S. (Eds.), Biochar for Environmental Management: Science and Technology. Earthscan, London, pp.1-12.
DOI: 10.4324/9780203762264
Google Scholar
[7]
Laird, D. A., P. Fleming, et al. (2010). "Impact of biochar amendments on the quality of a typical Midwestern agricultural soil." Geoderma 158(3-4): 443-449.
DOI: 10.1016/j.geoderma.2010.05.013
Google Scholar
[8]
Wilhelm, W.W., Doran, J.W., Power, J.F., 1986. Corn and soybean yield response to crop residue management under no-tillage production systems. Agronomy Journal 78, 184–189.
DOI: 10.2134/agronj1986.00021962007800010036x
Google Scholar
[9]
Anderson, C. R., L. M. Condron, et al. (2011). "Biochar induced soil microbial community change: Implications for biogeochemical cycling of carbon, nitrogen and phosphorus." Pedobiologia 54(5-6): 309-320.
DOI: 10.1016/j.pedobi.2011.07.005
Google Scholar
[10]
Kim, J.-S., Sparovek, S., Longo, R.M., De Melo, W.J., Crowley, D., 2007. Bacterial diversity of terra preta and pristine forest soil from the Western Amazon. Soil Biology and Biochemistry 39, 648-690.
DOI: 10.1016/j.soilbio.2006.08.010
Google Scholar
[11]
O'Neill, B., Grossman, J., Tsai, M.T., Gomes, J.E., Lehmann, J., Peterson, J., Neves, E., Thies, J.E., 2009. Bacterial community composition in Brazilian Anthrosols and adjacent soils characterized using culturing and molecular identification. Microbial Ecology 58, 23-35.
DOI: 10.1007/s00248-009-9515-y
Google Scholar
[12]
Liang, B., Lehmann, J., Sohi, S.P., Thies, J.E., O'Neill, B., Trujillo, L., Gaunt, J., Solomon, D., Grossman, J., Neves, E.G., Luizão, F.J., 2010. Black carbon affects the cycling of non-black carbon in soil. Organic Geochemistry 41, 206-213.
DOI: 10.1016/j.orggeochem.2009.09.007
Google Scholar
[13]
Grossman, J.M., O'Neill, B.E., Tsai, S.M., Liang, B., Neves, E., Lehmann, J., Thies, J.E., 2010. Amazonian anthrosols support similar microbial communities that differ distinctly from those extant in adjacent, unmodified soils of the same mineralogy. Microbial Ecology 60, 192-205.
DOI: 10.1007/s00248-010-9689-3
Google Scholar
[14]
Jin, H., 2010. Characterization of microbial life colonizing biochar and biochar amended soils. PhD Dissertation, Cornell University, Ithaca, NY.
Google Scholar
[15]
Pietikäinen, J., Kiikkilä, O., Fritze, H., 2000. Charcoal as a habitat for microbes and its effects on the microbial community of the underlying humus. Oikos 89, 231-242.
DOI: 10.1034/j.1600-0706.2000.890203.x
Google Scholar
[16]
Steiner, C., Teixeira, W.G., Lehmann, J., Zech, W., 2004. Microbial response to charcoal amendments of highly weathered soils and Amazonian Dark Earths in Central Amazonia e preliminary results. In: Glaser, B., Woods, W.I. (Eds.), Amazonian Dark Earths: Explorations in Time and Space. Springer, Berlin, Germany, pp.195-212.
DOI: 10.1007/978-3-662-05683-7_15
Google Scholar
[17]
Wardle, D.A., Nilsson, M.C., Zackrisson, O., 2008. Fire-derived charcoal causes loss of forest humus. Science 320 629-629.
DOI: 10.1126/science.1154960
Google Scholar
[18]
Kuzyakov, Y., Subbotina, I., Chen, H., Bogomolova, I., Xu, X., 2009. Black carbon decomposition and incorporation into microbial biomass estimated by 14C labeling. Soil Biology and Biochemistry 41, 210-219.
DOI: 10.1016/j.soilbio.2008.10.016
Google Scholar
[19]
Lehmann, J., M. C. Rillig, et al. (2011). "Biochar effects on soil biota – A review." Soil Biology and Biochemistry 43(9): 1812-1836.
DOI: 10.1016/j.soilbio.2011.04.022
Google Scholar
[20]
Muyzer, G., De Waal, E.C., Uitterlinden, A.G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695-700.
DOI: 10.1128/aem.59.3.695-700.1993
Google Scholar
[21]
Gardes, M. and T. D. Bruns (1993). "ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhizae and rusts." Molecular Ecology 2(2): 113-118.
DOI: 10.1111/j.1365-294x.1993.tb00005.x
Google Scholar
[22]
Andrews, S.S., Karlen, D.L., Cambardella, C.A., 2004. The soil management assessment framework: a quantitative soil quality evaluation method. Soil Science Society of America Journal 68, 1945–1962.
DOI: 10.2136/sssaj2004.1945
Google Scholar
[23]
Rondon, M.A., Molina, D., Hurtado, M., Ramirez, J., Lehmann, J., Major, J., Amezquita, E., 2006. Enhancing the productivity of crops and grasses while reducing greenhouse gas emissions through biochar amendments to unfertile tropical soils. In: Proceedings of the 18th World Congress of Soil Science, July 9–15, 2006, Philadelphia, PA, USA, p.138–168.
Google Scholar
[24]
Gaskin JW, Steiner C, Harris K, Das KC, Bibens B (2008) Effect of low-temperature pyrolysis conditions on biochar for agricultural use. T Asabe 51:2061–(2069)
DOI: 10.13031/2013.25409
Google Scholar
[25]
Chapin III F S, Barsdate R J and Barel D 1978 Phosphorus cycling in Alaskan coastal tundra: a hypothesis for the regulation of nutrient cycling. Oikos 31, 189–199.
DOI: 10.2307/3543562
Google Scholar
[26]
Walbridge MR 1991 Phosphorus availability in acid organic soils of the lower North Carolina coastal plain. Ecology 72, 2083–2100.
DOI: 10.2307/1941561
Google Scholar
[27]
Leinweber, P., Kruse, J., Walley, F.L., Gillespie, A., Eckardt, K.-U., Blyth, R., Regier, T., 2007. Nitrogen K-edge XANES - an overview of reference compounds used to identify 'unknown' organic nitrogen in environmental samples. Journal of Synchrotron Radiation 14, 500-511.
DOI: 10.1107/s0909049507042513
Google Scholar
[28]
Lehmann, J., da Silva Jr., J.P., Steiner, C., Nehls, T., Zech, W., Glaser, B., 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil 249, 343-357.
DOI: 10.1023/a:1022833116184
Google Scholar
[29]
Rondon, M.A., Lehmann, J., Ramirez, J., Hurtado, M., 2007. Biological nitrogen fixation by common beans (Phaseolus vulgaris L.) increases with biochar additions. Biol. Fertil. Soils 43, 699–708.
DOI: 10.1007/s00374-006-0152-z
Google Scholar
[30]
Yamato, M., Okimori, Y., Wibowo, I.F., Anshori, S., Ogawa, M., 2006. Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Science and Plant Nutrition 52, 489-495.
DOI: 10.1111/j.1747-0765.2006.00065.x
Google Scholar
[31]
Patric Lehmann, J., da Silva Jr., J.P., Steiner, C., Nehls, T., Zech, W., Glaser, B., 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil 249, 343-357.
DOI: 10.1023/a:1022833116184
Google Scholar
[32]
kWH and Khalid R A 1974 Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186, 53–55.
DOI: 10.1126/science.186.4158.53
Google Scholar
[33]
Richardson C J 1985 Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 228, 1424–1427.
DOI: 10.1126/science.228.4706.1424
Google Scholar
[34]
Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G., Knight, R., Fierer, N., 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME 4, 134-151.
DOI: 10.1038/ismej.2010.58
Google Scholar
[35]
Kara, O. and I. Bolat (2009). "Short-term effects of wildfire on microbial biomass and abundance in black pine plantation soils in Turkey." Ecological Indicators 9(6): 1151-1155.
DOI: 10.1016/j.ecolind.2009.01.002
Google Scholar
[36]
Ibekwe, A.M., Kennedy, A.C., Frohne, P.S., Papienik, S.K., Yang, C.-H., Crowley, D.E., 2002. Microbial diversity along a transect of agronomic zones. FEMS Microbial. Ecol. 39, 183–191.
DOI: 10.1111/j.1574-6941.2002.tb00921.x
Google Scholar
[37]
Horner-Devine, M.C., Carney, K.M., Bohannan, B.J.M., 2004. An ecological perspective on bacterial biodiversity. Proc. R. Soc. Lond. 271, 113–122.
DOI: 10.1098/rspb.2003.2549
Google Scholar
[38]
Yao, S., Merwin, I.A., Bird, G.W., Abawi, G.S., Thies, J.E., 2005. Orchard floor management practices that maintain vegetative or biomass groundcover stimulate soil microbial activity and alter soil microbial community composition. Plant Soil 271, 377–389.
DOI: 10.1007/s11104-004-3610-0
Google Scholar