The Influence of Excitation Frequency on Dynamical Behaviors of Atomic Force Microscope

Article Preview

Abstract:

This paper deals with dynamical behaviors of Atomic Force Microscope in the different excitation frequency. By using Poincare maps, phase trajectory, Lyapunov exponent, bifurcation diagram, the dynamical behaviors are identified based on the numerical solutions of the governing equations. Bifurcation diagrams are presented in the case that the excitation amplitude increases while other parameters are fixed. Numerical simulations indicate that periodic and chaotic motions occur in the system. At the same, when chaotic motions occur, the excitation amplitude decrease as the excitation frequency increases.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

3891-3895

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ashhab M, Salapaka MV, Dahleh M, Mezic I. Dynamical analysis and control of micocantilever. Automtica, 1999, 35, 1663-1670

DOI: 10.1016/s0005-1098(99)00077-1

Google Scholar

[2] Ashhab M, Salapaka MV, Dahleh M, Mezic I. Melnikov-based dynamical analysis of microcantilevers in scanning probe microscopy, Nonlinear Dynamics, 1999, 20: 197-220

DOI: 10.1023/a:1008342408448

Google Scholar

[3] Basso M, Giarre L, Dahleh M, Mezic I. Numerical analysis of complex dynamics in atomic force microscopes. Proceedings of the 1998 IEEE International Conference on Control Applications, Trieste, Italy, 1-4 September 1998, 1026-1030

DOI: 10.1109/cca.1998.721613

Google Scholar

[4] Basso M, Giarre L, Dahleh M, Mezic I. Complex dynamics in a harmonically excited Lennard-Jones oscillator: microcantilever-sample interaction in scanning probe microscopes. ASME Journal of Dynamic Systems, Measurement, and Control, 2000, 122(1): 240-245

DOI: 10.1115/1.482465

Google Scholar

[5] Lee SI, Howell SW, Raman A, Reifenberger R. Nonlinear dynamic perspectives on dynamic force microscopy. Ultramicroscopy, 2003, 97(1-4): 185-198

DOI: 10.1016/s0304-3991(03)00043-3

Google Scholar

[6] Ruetzel S, Lee SI, Raman A. Nonlinear dynamics of atomic-force-microscope probes driven in Lennard-Jones potentials. Proceedings of Royal Society of London A, 2003, 459: 1925-1948

DOI: 10.1098/rspa.2002.1115

Google Scholar

[7] Hu QQ, Chen LQ. Bifurcation and chaos in atomic force microscope. Chaos, Solitons & Fractals, 33 (2006) 711-715.

DOI: 10.1016/j.chaos.2006.01.049

Google Scholar

[8] Hu QQ, Chen LQ. Bifurcation and chaos of atomic-force-microscope probes driven in Lennard–Jones potentials . Chaos, Solitons & Fractals, 36 (2008) 740-745.

DOI: 10.1016/j.chaos.2006.07.004

Google Scholar