Histopathological Alternations of Blood Clam Tegillarca granosa in Acute Copper, Zinc, Lead and Cadmium Exposures

Article Preview

Abstract:

Blood clam, Tegillarca granosa, facing increasing danger of heavy metal contamination. In order to investigate the toxicological effect of copper (Cu), zinc (Zn), lead (Pb), and cadmium (Cd) on T. granosa, histopathological alternations were investigated in present study. Based on histopathological observation, Cu, Pb and Cd showed different degrees of damages to gills range from gill degeneration, gill fusion to interlamellar space and cilia reduction. In general, the more toxic the more severe damages to gills were observed. Massive oocytes degeneration in female gonad, muscle fiber degeneration and increased gap between muscle fibers in foot were found in Cd-exposure-treated T. granosa. Zn exposure induced an increase of epidermis wrinkles and a reduction of inner gaps. The results reveal different toxic mechanisms of tested heavy metals on T. granosa.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

422-425

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.A. Byrne and J. O'Halloran: Hydrobiologia. Vol. 465 (2001), p.209.

Google Scholar

[2] D. Rittschof and P. McClellan-Green: Mar. Pollut. Bull. Vol. 50 (2005), p.369.

Google Scholar

[3] T.M. Ansari, I.L. Marr and N. Tariq: J. Appl. Sci. Vol. 4 (2004), p.1.

Google Scholar

[4] M.L. Martín-Díaz, J. Blasco et al: Arch. Environ. Contam. Toxicol. Vol. 48 (2005), P. 233.

Google Scholar

[5] I. Riba, T.A. DelValls et al: Environ. Toxicol. Chem. Vol. 23 (2004), p.1100.

Google Scholar

[6] N.S. El-Shenawy: Environ. Toxicol. Vol. 19 (2004), p.143.

Google Scholar

[7] J. Wedderburn, I. McFadzen et al: Mar. Pollut. Bull. Vol. 40 (2000), p.257.

Google Scholar

[8] G.P. Domouhtsidou et al: Arch. Environ. Contam. Toxicol. Vol. 38 (2000), p.472.

Google Scholar

[9] H. Hummel, C. Amiard-Triquet et al: J. Sea Res. Vol. 35 (1996), p.315.

Google Scholar

[10] G. Liu, D. Innes and R. Thompson: J. Exp. Zool. Vol. 315 (2011), p.280.

Google Scholar

[11] G. Liu, X. Chai, Y. Shao et al: J. Environ. Sci. Vol. 23 (2011), p.330.

Google Scholar

[12] H.V. Ghate and L. Mulherkav: Indian J. Exp. Biol. Vol. 17 (1979), p.838.

Google Scholar

[13] H.M. Tuurala and A. Soivio: Bull. Environ. Contam. Toxicol. Vol. 34 (1985), p.385.

Google Scholar

[14] I. Sunila: Annales. Zoologici. Fennici. Vol. 18 (1987), p.213.

Google Scholar

[15] P. Tanhan, P. Sretarugsa, P. Pokethitiyook et al: Environ. Toxicol. Vol. 20 (2005), p.142.

Google Scholar

[16] R. Triebskorn and C. Kunast: Malacologia. Vol. 32 (1990), p.89.

Google Scholar

[17] S.L. Clark, S.J. Teh and D.E. Hinton: Mar. Environ. ResH. Vol. (2000), p.301.

Google Scholar

[18] K.L. TayH, S.J. TehH, K. HDoeH et al: Environ. Health. Perspect. Vol. 111 (2003), p.273.

Google Scholar

[19] J. Eldon, M. Pekkarinen and R. Kristoffersson: Ann. Zool. Fennici. Vol. 17 (1980), p.233.

Google Scholar