Hydrothermal Synthesis and Photocatalytic Property of Flower-Like ZnO Hierarchical Microstructures

Article Preview

Abstract:

ZnO hierarchical microstructures with uniform flower-like morphology were successfully prepared on a large scale through a carboxymethylcellulose sodium (CMC)-assisted hydrothermal route. X-ray powder diffraction (XRD) measurement confirmed the formation of wurtzite-structured ZnO phase. Field-emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) analysis indicated that the as-prepared ZnO sample was composed of numerous three dimensional flower-like microstructures, each of which was assembled by nanosheets with the thickness of about 40 nm. High-resolution transmission electron microscopy (HRTEM) measurement revealed the good crystallinity nature of the ZnO nanosheets in the flower-like microstructures. The formation mechanism and photocatalytic property of the as-prepared flower-like ZnO hierarchical microstructures were studied.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

740-745

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Whitesides, B. Grzybowski, Science 295 (2002) 2418.

Google Scholar

[2] H. Fan, K. Yang, S.T. Boys, Science 304 (2004) 567.

Google Scholar

[3] J.K. Yuan, W.N. Li, S. Gowez, S.L. Suib, J. Am. Chem. Soc. 127 (2005) 14184.

Google Scholar

[4] W.N. Li, L.C. Zhang, S. Sithambaram, J.K. Yuan, X.F. Shen, M. Aindow, S.L. Suib, J. Phys. Chem. C 111 (2007) 14694.

Google Scholar

[5] X.F. Zhou, Z.L. Hu, Y.Q. Fan, S.Chen, W.P. Ding, N.P. Xu, J. Phys. Chem. C 112 (2008 ) 11722

Google Scholar

[6] Z.L. Wang, Mater. Today 7 (2005) 26.

Google Scholar

[7] H.D. Yu, Z.P. Zhang, M.Y. Han, X.T. Hao, F.R. Zhu, J. Am. Chem. Soc. 127 (2005) 2378.

Google Scholar

[8] N. Saito, H. Haneda, T. Sekiguchi, N. Ohashi, I. Sakaguchi, K. Koumoto, Adv. Mater. 14 (2002) 418.

Google Scholar

[9] Y. Yang, H. Yan, Z. Fu, B. Yang, L. Xia, Y. Xu, et al. Solid State Commun. 138 (2006) 521.

Google Scholar

[10] K. Keis, E. Magnusson, H. Lindstrom, S.E. Lindquist, A. Hagfeldt, Sol Energy 73 (2002) 51.

Google Scholar

[11] K. Omichi, K. Kaiya, N. Takahashi, T. Nakamura, S. Okamoto, H. Yamamoto, J. Mater. Chem. 2001; 11:262.

Google Scholar

[12] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, et al. Science 292 (2001) 1987.

Google Scholar

[13] Eric A. Meulemkamp, J. Phys. Chem. B 102 (1998) 15566.

Google Scholar

[14] H.D. Yu, Z.P. Zhang, M.Y. Han, X.T. Hao, F.R. Zhu, J. Am. Chem. Soc. 127 (2005) 2378.

Google Scholar

[15] C. Cheng, M. Lei, L. Feng, T.L. Wong, K.M. Ho, K.K. Fung, M.M.T. Loy, D.P. Yu, N. Wang, ACS Nano, 3 (2009) 53.

Google Scholar

[16] C.H. Ye, Y.S. Bando, G.Z. Shen, D. Golberg J. Phys. Chem. B 110 (2006) 15146.

Google Scholar

[17] H.M. Hu, X.H. Huang, C.G. Deng, X.Y. Chen, Y.T. Qian, Mater. Chem. Phys. 106 (2007) 58.

Google Scholar

[18] J.Y. Lao, J.G. Wen, Z.F. Ren, Nano Lett. 2 (2002) 1287.

Google Scholar

[19] S.Y. Gao, H.J. Zhang, X.M. Wang, R.P. Deng, D.H. Sun, G.L. Zheng J. Phys. Chem. B 110 (2006) 15847.

Google Scholar

[20] J.M. Jang, S.D. Kim, H.M. Choi, J.Y. Kim, W.G. Jung, Mater. Chem. Phys. 113 (2009) 389.

Google Scholar

[21] Y.H Ni, X.W. Wei, J.M. Hong, Y.Ye, Mater. Sci. Eng. B 121 (2005) 42.

Google Scholar

[22] P. Li, H. Liu, F.X. Xu, Y. Wei, Mater. Chem. Phys. 112 (2008) 393.

Google Scholar

[23] L.L Wang, X.T. Zhang, C.L. Shao, Q. Qiao, Y.C. Liu, Mater Chem Phys 115 (2009) 547.

Google Scholar

[24] S.P. Garcia, S. Semancik, Chem. Mater. 19 (2007) 4016.

Google Scholar

[25] J.Y. Liu, Z. Guo, F.L. Meng, Y. Jia, T. Luo, M.Q. Li, J.H. Liu, Cryst. Growth Des. 9 (2009):1716.

Google Scholar