Hydrothermal Synthesis of ZnO/Zn Composites with Enhanced Photocatalytic Performance

Article Preview

Abstract:

ZnO/Zn composites photocatalysts were prepared by hydrothermal method using Zn powder as raw material, and the morphology, structure, and photocatalytic performance of composites were investigated. The results showed that the ZnO nanoparticles were produced at the surface of Zn metal powder during hydrothermal process. The thickness of ZnO outer layer (internal metal-semiconductor interfaces) can be controlled by varying hydrothermal treatment time. The resulting ZnO/Zn composites exhibit significantly higher photocatalytic activity than that of pure ZnO for degradation of anthraquinone dye (reactive brilliant blue KN-R) aqueous solution under ultraviolet light irradiation. The enhancement of photocatalytic performance of ZnO/Zn composites can be attributed to the formation of internal metal-semiconductor interfaces. The designed fabrication procedure is simple, feasible, and universal for a series of oxide/metal with controlled microstructure and improved performances.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

746-749

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.R. Carraway, A.J. Hoffman, M.R. Hoffmann, Environ. Sci. Technol. Vol. 28 (1994), p.786.

Google Scholar

[2] I.L. Marta, Appl. Catal. B. Vol.23 (1999), p.89.

Google Scholar

[3] A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C.1 (2000) ,p.1.

Google Scholar

[4] Y. Hao, M. Yang, W. Li, X. Qiao, L. Zhang, S. Cai, Sol. Energy Mater. Sol. Cells. Vol.60 (2000),p.349.

Google Scholar

[5] S. Anandan, A. Vinu, T. Mori, N. Gokulakrishnan, P. Srinivasu, V. Murugesan, K. Ariga, Catal. Commun. Vol.8 (2007),p.1377.

DOI: 10.1016/j.catcom.2006.12.001

Google Scholar

[6] E. Yassıtepe, H.C. Yatmaz, C. C. Duran, J. Photochem. Photobiol. A: Chem. Vol.198 (2008),p.1.

Google Scholar

[7] J.G. Yu, X.X. Yu, Environ. Sci. Technol. Vol.42(2008),p.4902.

Google Scholar

[8] Sakthivel, S.; Neppolian, B.; Shankar, M. V.; Arabindoo, B.; Palanichamy, M.; Murugesan, V. Sol. Energy Mater. Sol. Cells. Vol.77(2003),p.65.

DOI: 10.1016/s0927-0248(02)00255-6

Google Scholar

[9] J. Wu, C. Tseng, Appl. Catal. B. Vol.66 (2006),p.51.

Google Scholar

[10] B. Ohtani, K. Iwai, S. Nishimoto, S. Sato, J. Phys. Chem. B, Vol.101(1997),p.3349.

Google Scholar

[11] J. Papp, H.S. Shen, R. Kershaw, K. Dwight, A. Wold, A. Wold. Chem. Mater. Vol.5(1993),p.284.

Google Scholar

[12] S. Cheng, U. Nickel, Chem. Commun. Vol.2(1998),p.133.

Google Scholar

[13] Ai, Z. H.; Zhang, L.Z.; Lee, S. C.; Ho, W. K. J. Phys. Chem. C. Vol.113(2009),p.20896.

Google Scholar

[14] Hongchao Ma, Ke Teng, Yinghuan Fu, Yu Song, Yongwei Wang and Xiaoli Dong, Energy Environ. Sci. 4(2011), p.3067.

Google Scholar

[15] Ed.LIU Hongfang, WU Run, HUANG Zhuo, HU Junhui, TANG Heqing, XIE Changsheng. Journal of Wuhan University of Technology. Mater Sci.Vol, 22 (2007), p.643

Google Scholar

[16] L.Q. Jing, X.J. Sun, W.M. Cai, Z.L. Xu, Y.G. Du, H.G.Fu, J. Phys. Chem. Solids. Vol.64 (2003),p.615.

Google Scholar