Factors Affecting the Genotoxicity of Drinking Water

Article Preview

Abstract:

The genotoxicity of drinking water have received increased attention in recent years to assess aquatic ecosystem safety. The factors affecting the genotoxicity of drinking water, including sample preparation, the concentration of bromide and ammonia nitrogen (NH3-N), were investigated using umu test. The result showed that sample preparation and bromide could significantly influence the genotoxicity of drinking water. During sample preparation, 1 and 2 L waters concentrated were suitable for umu test and the highest yield for genotoxic compounds was obtained from acid solution (pH 2) when ethyl acetate served as the eluant. Bromide could substantially increase the genotoxicity of drinking water after chlorine disinfection. The genotoxicity of drinking water could not be increased with increasing NH3-N concentration.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 518-523)

Pages:

922-927

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q.-Y. Wu, Y. Li, H.-Y. Hu, Y.-X. Sun and F.-Y. Zhao, Environ. Sci. Technol. 44. 13 (2010), 4924-4929.

Google Scholar

[2] B. Zegura, E. Heath, A. Cernosa and M. Filipic, Chemosphere 75. 11 (2009), 1453-1460.

Google Scholar

[3] H.J. Kool, C.F. Vankreijl, E. Degreef and H.J. Vankranen, Environ. Health Persp 46. DEC (1982), 207-214.

Google Scholar

[4] T. Myllykangas, T.K. Nissinen, J. Maki-Paakkanen, A. Hirvonen and T. Vartiainen, Chemosphere 53. 7 (2003), 745-756.

DOI: 10.1016/s0045-6535(03)00535-6

Google Scholar

[5] H. Takanashi, M. Kishida, T. Nakajima, A. Ohki, M. Akiba and T. Aizawa, Chemosphere 77. 3 (2009), 434-439.

DOI: 10.1016/j.chemosphere.2009.06.038

Google Scholar

[6] T. Vartiainen, A. Liimatainen, P. Kauranen and L. Hiisvirta, Chemosphere 17. 1 (1988), 189-202.

DOI: 10.1016/0045-6535(88)90056-2

Google Scholar

[7] D. Wang, Z. Xu, Y. Zhao, X. Yan and J. Shi, Chemosphere 83. 1 (2010), 14-20.

Google Scholar

[8] M. Hladik, K. Smalling and K. Kuivila, B. Environ. Contam. Tox 80. 2 (2008), 139-144.

Google Scholar

[9] N. Fontanals, R.M. Marc and F. Borrull, TrAC Trends in Analytical Chemistry 24. 5 (2005), 394-406.

DOI: 10.1016/j.trac.2005.01.012

Google Scholar

[10] P. Rantakokko, M. Yritys and T. Vartiainen, J. Chromatogr. A 1028. 2 (2004), 179-188.

Google Scholar

[11] J. Fang, H.A. Semple and J. Song, J. Chromatogr. B 809. 1 (2004), 9-14.

Google Scholar

[12] T. Väänänen, P. Kuronen and E. Pehu, Journal of Chromatography A 869. 1-2 (2000), 301-305.

Google Scholar

[13] T. Vartiainen, A. Liimatainen, S. Jääskeläinen and P. Kauranen, Water Res. 21. 7 (1987), 773-779.

Google Scholar

[14] L.-S. Wang, H.-Y. Hu and C. Wang, Environ. Sci. Technol. 41. 1 (2007), 160-165.

Google Scholar

[15] T.K. Nissinen, I.T. Miettinen, P.J. Martikainen and T. Vartiainen, Chemosphere 48. 1 (2002), 9-20.

Google Scholar

[16] Y.-X. Sun, Q.-Y. Wu, H.-Y. Hu and J. Tian, Chemosphere 76. 5 (2009), 631-637.

Google Scholar