Numerical Simulation of the Swirl Flow Effect on the Cold Condition Characteristic of Entrained Flow Gasifier

Article Preview

Abstract:

The swirl flow could enhance the turbulent mixing and promote the slagging in the entrained flow gasifier. In recent research, the effect of swirl flow on cold flow characteristic of entrained flow gasifier was neglected or simplified. To address this, a three-dimensional computational fluid dynamic (CFD) simulation was presented to investigate the effect of swirl flow on the cold flow characteristic of entrained flow gasifier. Several control parameters, i.e., the diameter and injection velocity of nozzles, were found to significantly affect swirl intensity and velocity distribution in the entrained flow gasifier. Our numerical simulation provides an effective way for researchers or engineers to optimize and scale up the gasifier and nozzle.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 524-527)

Pages:

1943-1946

Citation:

Online since:

May 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Perez-Fortes, A. D. Bojarski, E. Velo, J. M. Nougues, and L. Puigjaner: Energy34 (2009), p.1721.

Google Scholar

[2] Statistical Review of World Energy 2010, BP.

Google Scholar

[3] Y. X. Wu, P. J. Smith, J. S. Zhang, J. N. Thornock, and G. X. Yue: Energy & Fuels 24 (2009), p.1170.

Google Scholar

[4] Y. X. Wu, J. S. Zhang, P. J. Smith, H. Zhang, C. Reid, J. F. Lv, and G. X. Yue, :Energy & Fuels 24 (2010), p.1156.

Google Scholar

[5] A. Slezak, J. M. Kuhlman, L. J. Shadle, J. Spenik, and S. P. Shi: Powder Technology 203 (2010), p.98.

DOI: 10.1016/j.powtec.2010.03.029

Google Scholar

[6] C. Kunze and H. Spliethoff:Energy Conversion and Management52 (2011), p.2135.

Google Scholar

[7] M. Kumar and A. F. Ghoniem: Energy & Fuels(2011), inpress p.111205180844002.

Google Scholar

[8] M. Kumar and A. F. Ghoniem: Energy & Fuels(2011), inpress p.111206121057002.

Google Scholar

[9] R. S. Kane and R. A. M. Callister: AIChE Journal 24(1978), p.55.

Google Scholar

[10] H. T. Kim, Y. H. Lim, Y. S. Jeon, and Y. D. Yoo:Iecec-97 - Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference(1997), p.927.

DOI: 10.1109/iecec.1997.660235

Google Scholar

[11] Y. Yun, S. J. Lee, and J. P. Hong: Korean Journal of Chemical Engineering 28(2011), p.1188.

Google Scholar

[12] H. Watanabe and M. Otaka: Fuel 85(2006), p.1935.

Google Scholar

[13] L. G. Zheng and E. Furinsky: Energy Conversion and Management 46(2005), p.1767.

Google Scholar

[14] S. V. Nathen, R. D. Kirkpatrick, and B. R. Young: Energy & Fuels 22(2008), p.2687.

Google Scholar

[15] S. Z. Sun, H. M. Tian, Y. J. Zhao, R. Sun, and H. Zhou: Bioresource Technology 101(2010), p.3678.

Google Scholar

[16] H. Lee, S. Choi, and M. Paek: Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy 225(2011), p.74.

Google Scholar

[17] R. F. D. Monaghan and A. F. Ghoniem: Fuel 91(2012), p.61.

Google Scholar

[18] R. F. D. Monaghan and A. F. Ghoniem: Fuel inpress.

Google Scholar

[19] Z. Q. Wu, S. Z. Wang, and L. Chen:The Third China Energy Scientist Forum(2010) (In Chinese).

Google Scholar

[20] C. X. Chen, T. Miyoshi, H. Kamiya, M. Horio, and T. Kojima: Canadian Journal of Chemical Engineering 77(1999), p.745.

Google Scholar

[21] C. X. Chen, M. Horio, and T. Kojima: Fuel 80(2011), p.1513.

Google Scholar