Enhanced Electrochromic Performance of Sol-Gel Derived WO3 Thin Films Assisted by Electrospun PVA Nanofibers

Article Preview

Abstract:

The paper describes the results obtained on the enhanced electrochromic performance of Tungsten oxide (WO3) thin films assisted by electrospun PVA nanofibers. WO3 was fabricated by spin coating technique with tungsten powder as starting precursor. The effect of electrospun-PVA nanofibers layer on structural, chemical composition, surface morphology and electrochromic properties of the films were characterized by X-ray diffractometer (XRD), X-ray photo-emission spectroscopy (XPS), scanning electron microscope (SEM) and UV-VIS spectrophotometer. The XRD analysis suggested that the crystalline of WO3 can be identified as a monoclinic WO3 structure. XPS investigations also confirmed the existence of characteristic peaks of W. The significant enhancement of electrochromic properties of the films is achieved by additive electrospun-PVA nanofiber layer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

249-253

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Georg, A. Georg, Electrochromic device with a redox electrolyte, Sol. Energy Mater. Sol. Cells. 93 (2009) 1329–1337.

DOI: 10.1016/j.solmat.2009.02.009

Google Scholar

[2] P. R. Somani, S. Radhakrishnan, Electrochromic materials and devices: present and future, Mater. Chem. Phys. 77 (2002) 117–133.

Google Scholar

[3] K.J. Patel, C.J. Panchal, M.S. Desai, P.K. Mehta, An investigation of the insertion of the cations H+, Na+, K+ on the electrochromic properties of the thermally evaporated WO3 thin films grown at different substrate temperatures, Mater. Chem. Phys. 124 (2010).

DOI: 10.1016/j.matchemphys.2010.08.021

Google Scholar

[4] X. Sun, Z. Liu, H. o Cao, Effects of film density on electrochromic tungsten oxide thin films deposited by reactive dc-pulsed magnetron sputtering, J. Alloys Compd. 504S (2010) S418–S421.

DOI: 10.1016/j.jallcom.2010.03.155

Google Scholar

[5] C. M. White, D. T. Gillaspie, E. Whitney, S. Hee Lee, Anne C. Dillon, Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition, Thin Solid Films. 12 (2009) 3596–3599.

DOI: 10.1016/j.tsf.2009.01.033

Google Scholar

[6] A.A. Joraid, Comparison of electrochromic amorphous and crystalline electron beam deposited WO3 thin films, Curr. Appl Phys. 9 (2009) 73–79.

DOI: 10.1016/j.cap.2007.11.012

Google Scholar

[7] J.M. Ortega, A. I. Martı´nez, D. R. Acosta, C. R. Magan˜ a, Structural and electrochemical studies of WO3 films deposited by pulsed spray pyrolysis, Sol. Energy Mater. Sol. Cells. 90 (2006) 2471–2479.

DOI: 10.1016/j.solmat.2006.03.033

Google Scholar

[8] M. Deepa, T.K. Saxena, D.P. Singh, K.N. Sood, S.A. Agnihotry, Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties, Electrochim. Acta. 51(2006) 1974-(1989).

DOI: 10.1016/j.electacta.2005.06.027

Google Scholar

[9] S. R Bathe, P. S Patil, Influence of Nb doping on the electrochromic properties of WO3 films, J. Phys. D : Appl. Phys. 40(2007) 7423-7431.

DOI: 10.1088/0022-3727/40/23/025

Google Scholar

[10] J.M. O-Rueda de León, D.R. Acosta, Improving electrochromic behavior spray pyrolised WO3 thin solid films Mo doping, Electrochim. Acta. 56(2011) 2599-2605.

DOI: 10.1016/j.electacta.2010.11.038

Google Scholar

[11] K. Paipitak, C. Kahattha, W. Techitdheera, S. Porntheeraphat, W. Pecharapa, Characterization of Sol-gel Derived Ti-doped Tungsten Oxide Electrochromic Thin Films, Energy Procedia. 9(2011) 446-451.

DOI: 10.1016/j.egypro.2011.09.050

Google Scholar

[12] S. Wu, F. Li, H. Wang, L. Fu, B. Zhang, G. Li, Effects of poly (vinyl alcohol) (PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution, Polymer. 51 (2010).

DOI: 10.1016/j.polymer.2010.10.015

Google Scholar

[13] X. Wang, K. Zhang, Y. Yang, L. Wang, Z. Zhou, M. Zhu, B. S. Hsiao, B. Chu, Development of hydrophilic barrier layer on nanofibrous substrate as composite membrane via a facile route, J. Membr. Sci. 356 (2010) 110–116.

DOI: 10.1016/j.memsci.2010.03.039

Google Scholar

[14] F, Jiang, T. Zheng, Y. Yang, Preparation and electrochromic properties of tungsten oxide and iridium oxide porous films, J. Non-Cryst. Solids. 354 (2008) 1290–1293.

DOI: 10.1016/j.jnoncrysol.2006.10.083

Google Scholar

[15] V. Vinay Shankar, H. Martin, S. Alan, S. Kirill, K. Dennis, B. Radim, S. Wolfgang, L. Alfred, Enhanced photoelectrochemical properties of WO3 thin films fabricated by reactive magnetron sputtering, Int. J. Hydrogen Energy. 36 (2011): 4724-4731.

DOI: 10.1016/j.ijhydene.2011.01.087

Google Scholar

[16] H. Chi-Hwan, H. Sang-Do, G. Jihye, S.P. Khatkar, Synthesis of indium tin oxide (ITO) and fluorine-doped tin oxide (FTO) nano - powder by sol–gel combustion hybrid method, Mater. Lett. 61 (2007): 1701–1703.

DOI: 10.1016/j.matlet.2006.07.114

Google Scholar

[17] M. Deepa, A.K. Srivastava, S.N. Sharma, G., S.M. Shivaprasad, Microstructural and electrochromic properties of tungsten oxide thin films produced by surfactant mediated electrodeposition, Appl. Surf. Sci. 254 (2008) 2342-2352.

DOI: 10.1016/j.apsusc.2007.09.035

Google Scholar

[18] M. Giannouli, G. Leftheriotis, The effect of precursor aging on the morphology and electrochromic performance of electrodeposited tungsten oxide films, Sol. Energy Mater. Sol. Cells. 95 (2011) 1932–(1939).

DOI: 10.1016/j.solmat.2011.02.024

Google Scholar

[19] M. Deepa, A.K. Srivastava, S.N. Sharma, S.M. Shivaprasad, Microstructural and electrochromic properties of tungsten oxide thin films produced by surfactant mediated electrodeposition, Appl. Surf. Sci. 254(2008).

DOI: 10.1016/j.apsusc.2007.09.035

Google Scholar