[1]
S.H. Kim, D.B. Asay, M.T. Dugger, Nanotribology and MEMS, Nano today 2 (2007) 22-29.
DOI: 10.1016/s1748-0132(07)70140-8
Google Scholar
[2]
B. Bhushan, J.N. Israelachvili, U. Landman, Nanotribology: friction, wear and lubrication at the atomic scale, Nature 374 (2002) 607-616.
DOI: 10.1038/374607a0
Google Scholar
[5]
F. Lewis, P. Horny, P. Hale, S. Turgeon, M. Tatoulian, D. Mantovani, Study of the adhesion of thin plasma fluorocarbon coatings resisting plastic deformation for stent applications, J. Phys. D: Appl. Phys. 41 (2008) 045310.
DOI: 10.1088/0022-3727/41/4/045310
Google Scholar
[6]
Q. Jun, L. Jianbin, W. Kunlin W. Shizhu, Mechanical and tribological properties of diamond-Like carbon films deposited by electron cyclotron resonance microwave plasma chemical vapor deposition, Tribol. Lett. 14 (2003) 105-109.
DOI: 10.1023/a:1021704320444
Google Scholar
[7]
Z. Guo, Y. Meng, C. Su, H. Wu, An on-chip micro-friction tester for tribology research of silicon based MEMS devices, Microsyst. Technol. 14 (2007) 109-118.
DOI: 10.1007/s00542-007-0413-2
Google Scholar
[8]
J. Krim, Surface science and the atomic-scale origins of friction: what once was old is new again, Surf. Sci. 500 (2002) 741–758.
DOI: 10.1016/s0039-6028(01)01529-1
Google Scholar
[9]
S. Sriram, M. Bhaskaran, K.T. Short, G.I. Matthews, A.S. Holland, Thin film piezoelectric response characterisation using atomic force microscopy with standard contact mode imaging, Micron 40 (2009) 109-113.
DOI: 10.1016/j.micron.2008.01.007
Google Scholar
[10]
X. Li, W. Guan, H. Yan, Fabrication and AFM/FFM studies of polyacrylamide-carbon nanotubes (PAM-CNTs) copolymer thin films, Mater Chem Phys. 88 (2004) 53-58.
DOI: 10.1016/j.matchemphys.2004.05.048
Google Scholar