Large Scale Synthesis of Silver Nanowires with High Aspect Ratios by Glucose and Fe3+

Article Preview

Abstract:

Silver nanowires with lenghths of several hundred micrometers and diameters of 90~150 nm were prepared by glucose and Fe3+ in the presence of poly (vinyl pyrrolidone). The results show that the concentration of poly (vinyl pyrrolidone), Fe3+ and AgNO3 are the vital factors to determine the shape of the final products. The growth kinetics of the as-synthesized silver nanowires with high aspect ratios are also discussed in this work. This silver nanowires are expected to form the network used for excellent conductors or electrodes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

541-545

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Wu and P. Yang: J. Am. Chem. Soc. Vol. 123 (2001), p.3165.

Google Scholar

[2] M. A. El-sayed: Acc. Chem. Res. Vol. 34 (2001), p.257.

Google Scholar

[3] J. Storhoff, R. Elghanian, R. Mucic, C. Mirkin and R. Letsinger: J. Am. Chem. Soc. Vol. 120 (1998), p. (1959).

DOI: 10.1021/ja972332i

Google Scholar

[4] S. Sun, C. B. Murray, D. Weller, L. Folks and A. Moser: Science Vol. 287 (2000), p. (1989).

Google Scholar

[5] C. L. Nehl, H. W. Liao and J. H. Hafner: Nano Lett. Vol. 6 (2006), p.683.

Google Scholar

[6] D. H. Jeong, Y. Zhang and M. Moskovits: J. Phys. Chem. B Vol. 108 (2004), p.12724.

Google Scholar

[7] M. Singh, A. K. Singh, R. K. Mandal and I. Sinha: Colloids Surface A Vol. 390 (2011), p.167.

Google Scholar

[8] Z. Li, A. Gu, M. Guan, Q. Zhou and T. Shang: Colloid Polym. Sci. Vol. 288 (2010), p.1185.

Google Scholar

[9] J. Luo, Z. Huang, Y. Zhao, L. Zhang and J. Zhu: Adv. Mater. Vol. 16 (2004), p.1512.

Google Scholar

[10] Y. Sun and Y. Xia: Adv. Mater. Vol. 16 (2004), p.264.

Google Scholar

[11] J. Krantz, M. Richter, S. Spallek, E. Spiecker and C. J. Brabec: Adv. Funct. Mater. Vol. 21 (2011), p.4784.

DOI: 10.1002/adfm.201100457

Google Scholar

[12] R. Zhu, C. H. Chung, K. C. Cha, W. Yang, Y. Zheng, H. Zhou, T. B. Song, C. Chen, P. S. Weiss, G. Li and Y. Yang: ACS Nano. Vol. 5 (2011), p.9877.

Google Scholar

[13] J. Mbindyo, T. Mallouk, J. Mattzela, I. Kratochvilova, B. Razavi, T. Jackson and T. Mayer: J. Am. Chem. Soc. Vol. 124 (2002), p.4020.

DOI: 10.1021/ja016696t

Google Scholar

[14] G. Wei, H. Zhou, Z. Liu, Y. Song, L. Wang, L. Sun and Z. Li: J. Phy. Chem. B. Vol. 109 (2005), p.8738.

Google Scholar

[15] S. Zhang, Z. Jiang, Z. Xie, X. Xu, R. Huang and L. Zhang: J. Phy. Chem. B. Vol. 109 (2005), p.9416.

Google Scholar

[16] B. Wiley, Y. Sun and Y. Xia: Langmuir Vol. 21 (2005), p.8077.

Google Scholar

[17] Y. Ma, W. Li, J. Zeng, M. Mckiernan, Z. Xie and Y. Xia: J. Mater. Chem. Vol. 20 (2010), p.3586.

Google Scholar

[18] J. Chen, T. Herricks, M. Geissler and Y. Xia: J. Am. Chem. Soc. Vol. 126 (2004), 10854.

Google Scholar