[1]
G. Senanayake: Gold leaching in non-cyanide lixiviant systems: critical issues on fundamentals and applications . Minerals Engineering 17, 785-801 (2004).
DOI: 10.1016/j.mineng.2004.01.008
Google Scholar
[2]
M.G. AYLMORE, D.M. MUIR: Thiosulfate leaching of gold-a review. Minerals Engineering 14(2), 135-174, (2001).
DOI: 10.1016/s0892-6875(00)00172-2
Google Scholar
[3]
K. J. HENLEY, N. C. CLARKE, P. SAUTER: Evaluation of a diagnostic leaching technique for gold in native gold and gold ± silver tellurides. Minerals Engineering 14(1), 1-12 ( 2001).
DOI: 10.1016/s0892-6875(00)00156-4
Google Scholar
[4]
Gamini Senanayake: Review of rate constants for thiosulphate leaching of gold from ores, concentrates and flat surfaces: Effect of host minerals and pH. Minerals Engineering (20), 1-15 ( 2007).
DOI: 10.1016/j.mineng.2006.04.011
Google Scholar
[5]
D. FENG, J. S. J. VAN DEVENTER: Preg-robbing phenomena in the thiosulphate leaching of gold ores. Minerals Engineering 14(11), 1387-1402 (2001).
DOI: 10.1016/s0892-6875(01)00153-4
Google Scholar
[6]
G. Deschênes, J. McMullen, S. Ellis, M. Fulton, A. Atkin: Investigation on the cyanide leaching optimization for the treatment of KCGM gold flotation concentrate-phase 1. Minerals Engineering (18), 832-838 (2005).
DOI: 10.1016/j.mineng.2005.01.025
Google Scholar
[7]
Q. J. Liu, X. J. Wang, S. R. Zhou. Study on the All- sliming Flotation of Low-grade Zinc Oxide Ore. Proceedings of XXIV INTERNATIONAL MINGRAL PROCESSING CONGRESS 1, 1389-1394 (2008).
Google Scholar
[9]
D. Feng, J. S. J. van Deventer: The effect of iron contaminants on thiosulphate leaching of gold. Minerals Engineering, (23), 399-406 (2010).
DOI: 10.1016/j.mineng.2009.11.016
Google Scholar
[10]
S. Örgül, Ü. Atalay: Reaction chemistry of gold leaching in thiourea solution for a Turkish gold ore. Hydrometallurgy (67), 71-77 (2002).
DOI: 10.1016/s0304-386x(02)00136-6
Google Scholar
[11]
François Coderre, David G. Dixon: Modeling the cyanide heap leaching of cupriferous gold ores. Hydrometallurgy (52), 151-175 (1999).
DOI: 10.1016/s0304-386x(99)00016-x
Google Scholar
[12]
G. Deschênes, C. Xia, M. Fulton, Louis J. Cabri, J. Price: Evaluation of leaching parameters for a refractory gold ore containing aurostibite and antimony minerals: part Ⅰ- Central zone. Minerals Engineering (22), 799-808 (2009).
DOI: 10.1016/j.mineng.2009.02.003
Google Scholar
[13]
D. Feng, J. S. J. van Deventer: Thiosulphate leaching of gold in the presence of ethylenediaminetetraacetic acid (EDTA). Minerals Engineering (23), 143-150 (2010).
DOI: 10.1016/j.mineng.2009.11.009
Google Scholar
[14]
P. L Breuer, X. Dai, M. I. Jeffrey: Leaching of gold and copper minerals in cyanide deficient copper solutions. Hydrometallurgy 78, 156-165(2005).
DOI: 10.1016/j.hydromet.2005.02.004
Google Scholar
[15]
H. Tan, D. Feng, G. C. Lukey, J. S. J. van Deventer: The behavior of carbonaceous matter in cyanide leaching of gold. Hydrometallurgy (78), 226-235 (2005).
DOI: 10.1016/j.hydromet.2005.03.001
Google Scholar
[15]
Jiayuan Zhang, Ziguo Hu, Wei Ge: Application of the Discrete Approach to the Simulation of Size Segregation in Granular Chute Flow. American Chemical Society (43), 5521-5528 (2004).
DOI: 10.1021/ie034254f
Google Scholar
[16]
LIU Quanjun, CHEN Huajun. Research on the Effect of Microwave Radiation to the Strength of Ore. NEW DEVELOPMENT ON ENGINEERING 2, 205-208 (2009).
Google Scholar
[17]
LIU Fa zhen, LIU Liang ping: Application of spiral chute in beneficiation of silica sand. Industrial Minerals and Processing(7), 27-28 (2003).
Google Scholar