Ag–Loaded Polypyrrole/Carbon Nanotube: One-Step In Situ Polymerization and Improved Capacitance

Article Preview

Abstract:

Ternary composites of Ag–loaded polypyrrole/carbon nanotube (Ag–PPy/CNT) are prepared using a one–step in situ polymerization. Ag nanoparticles are uniformly decorated on the core–shell PPy/CNT networks. This approach provides a simple, easily accessible strategy for preparing three–dimensional noble metal–conductive polymer–carbon nanotube composites. Electrochemical properties of Ag–loaded composites are evaluated to understand the effect of Ag on the structure and kinetic process of the composite. Results indicate that the composites have good electrochemical reversibility and high specific capacitance. The specific capacitiance of Ag–PPy/CNT composites are enhanced greatly from 206.7 F g–1 of PPy/CNT composites to 528.6 F g–1 at 3 mA cm–2. This demonstrates that combining nano–sized Ag with supercapacitor materials is very effective in promoting electrochemical performance of materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

35-38

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119

Google Scholar

[2] V.I. Chegel, O.A. Raitman, O. Llioubashevski, Y. Shirshov, E. Katz and I. Willner: Adv. Mater. Vol. 14 (2002), p.1549

Google Scholar

[3] A. Rahy, M. Sakrout, S. Manohar, S.J. Cho, J. Feraris and D.J. Yang: Chem. Mater. Vol. 20 (2008), p.4808

Google Scholar

[4] C.C. Hu and J.Y. Lin: Electrochim. Acta Vol. 47 (2002), p.4055

Google Scholar

[5] V. Georgakilas, P. Dallas, D. Niarchos, N. Boukos and C. Trapalis: Synth. Met. Vol. 159 (2009), p.632

DOI: 10.1016/j.synthmet.2008.12.007

Google Scholar

[6] H.F. An, Y. Wang, X.Y. Wang, L.P. Zheng, X.Y. Wang, L.H. Yi and X.Y. Zhang: J. Power Sources Vol. 195 (2010), p.6964

Google Scholar

[7] P. Jiménez, P. Castell, R. Sainz, A. Ansón, M.T. Martínez, A.M. Benito and W.K. Maser: J. Phys. Chem. B Vol. 114 (2010), p.1579

DOI: 10.1021/jp909093e

Google Scholar

[8] Y.P. Fang, J.W. Liu, D.J. Yu, J.P. Wicksted, K. Kalkan, C.O. Topal, B.N. Flanders, J. Wu and J. Li: J. Power Sources Vol. 195 (2010), p.674

DOI: 10.1016/j.jpowsour.2009.07.033

Google Scholar

[9] R.V. Salvatierra, M.M. Oliveira and A.J.G. Zarbin: Chem. Mater. Vol. 22 (2010), p.5222

Google Scholar

[10] A. Drury, S. Chaure, M. Kröll, V. NIcolosi, N. Chaure and W.J. Blau: Chem. Mater. Vol. 19 (2007), p.4252

DOI: 10.1021/cm071102s

Google Scholar

[11] Y. Gao, D.C. Shan, F. Cao, J. Gong, X. Li, H.Y. Ma, Z.M. Su and L.Y. Qu: J. Phys. Chem. C Vol. 113 (2009), p.15175

Google Scholar

[12] P.R. Sajanlal, T.S. Sreeprasad, A. Sreekumaran Nair and T. Pradeep: Langmuir Vol. 24 (2008), p.4607

Google Scholar

[13] I. Šděnková, M. Trchová, J. Stejskal and J. Prokeš: ACS Appl. Mater. Interfaces Vol. 1 (2009), p. (1906)

Google Scholar