Synthesis of MoS2/C Submicrosphere by PVP-Assisted Hydrothermal Method for Lithium Ion Battery

Article Preview

Abstract:

Molybdenum disulfide/carbon (MoS2/C) submicrosphere was synthesized through a PVP-assisted hydrothermal reaction of sodium molybdate and thiourea (CS(NH2)2), The structure and morphology of MoS2 composites were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM). The lithium intercalation/de-intercalation behavior of as-prepared MoS2 submicrosphere electrode was also investigated. It was found that the MoS2 submicrosphere electrode exhibited the best electrochemical performance, retaining a specific capacity of 575mAh/g after 100 cycles, with higher first charge capacity (1037 mAh/g), which was better than those of the MoS2 prepared without PVP

You might also be interested in these eBooks

Info:

Periodical:

Pages:

471-477

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Weimer, J. Kramar, C. Bai, J.D. Baldeschwieler. Phys. Rev. B Vol. 37 (1988), p, 4292.

Google Scholar

[2] R.G. Diickinson, L. Pauling. J. Am. Chem. Soc. Vol. 45 (1923), p, 1466.

Google Scholar

[3] R. Dominko, D. Arcon, A. Mrzel, A. Zorko, P. Cevc, P. Venturini, M. Gaberscek, M. Remskar, D. Mihailovic, Adv. Mater. Vol. 14 (2002), p, 1531.

DOI: 10.1002/1521-4095(20021104)14:21<1531::aid-adma1531>3.0.co;2-p

Google Scholar

[4] G.X. Wang, S. Bewlay, J. Yao, H.K. Liu, S.X. Dou, Electrochem. Solid-State Lett. Vol. 7 (2004), p, A321.

Google Scholar

[5] X.L. Li, Y.D. Li, J. Phys. Chem. B Vol. 108 (2004), p, 13893.

Google Scholar

[6] Y. Miki, D. Nakazato, H. Ikuta, T. Uchida, M. Wakihara. J. Power Sources Vol. 54 (1995), p, 508.

DOI: 10.1016/0378-7753(94)02136-q

Google Scholar

[7] J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J. P. Lemmon. Chem. Mater. Vol. 22 (2010), p, 4522.

Google Scholar

[8] K. Chang, W. Chen, L. Ma, H. Li, F. Huang, Z. Xu, Q. Zhang, J.Y. Lee. J. Mater. Chem. Vol. 21 (2011), p, 6251.

Google Scholar

[9] C.Q. Feng , J. Ma, H. Li, R. Zeng, Z.P. Guo, H.K. Liu. Mater. Res. Bull. Vol. 44 (2009), p, 1811.

Google Scholar

[10] S.Q. Wang, G.H. Li, G.D. Du, X.Y. Jiang, C.Q. Feng, Z.P. Guo, S.J. Kim. Chin. J. Chem. Eng. Vol. 18 (2010), p, 910.

Google Scholar

[11] Y. Feldman, E . Wasserman, D.J. Srolovitz, R. Tenne. Science Vol. 267 (1995), p, 222.

Google Scholar

[12] Y.Y. Peng, Z.Y. Meng, C. Zhong, J. Lu, W.C. Yu, Z.P. Yang. J. Solid. State. Chem. Vol. 159 (2001), p, 170.

Google Scholar

[13] G. Du, Z. Guo, S. Wang, R. Zeng, Z. Chen, H. Liu,. Chem. Commu. Vol. 46 (2010), p, 1106.

Google Scholar

[14] C.M. Zelenski, P.K. Dorhout. J. Am. Chem. Soc. Vol. 120 (1998), p, 734.

Google Scholar

[15] Y. Tian, Y. He, Y.F. Zhu. Mater. Chem. Phys. Vol. 87 (2004), p, 87.

Google Scholar

[16] W.J. Lia, E.W. Shi, J.M. Ko, Z.Z. Chen, H. Ogino, T. Fukuda. J. Cryst. Growth Vol. 250 (2003), p, 418.

Google Scholar

[17] Y.B. Li, Y. Bando, D. Golberg. Appl. Phys. Lett. Vol. 82 (2003), p, (1962).

Google Scholar

[18] H. Li,W.J. Li, L. Ma,W.X. Chen, J.M. Wang. J. Alloys Compd. Vol. 471 (2009), p, 442.

Google Scholar

[19] Q. Li, E.C. Walter, W.E. Vander Veer, B.J. Murray, J.T. Newberg, E.W. Bohannan. J. Phys. Chem. B Vol. 109 (2005), p, 3169.

Google Scholar

[20] T. Weber, J.C. Muijsers, J.H.M.C. Van Wolput, C.P.J. Verhagen, J.W. Niemantsverdriet. J. Phys. Chem. Vol. 100 (1996), p, 14144.

Google Scholar

[21] M.M. Mdleleni, T. Hyeon, K.S. Suslick. J. Am. Chem. Soc. Vol. 120 (1998), p, 6189.

Google Scholar

[22] H.Q. Shi, X. Fu, X.D. Zhou, D.B. Wang, Z.S. Hu. J. Solid. State. Chem. Vol. 179 (2006), p, 1690.

Google Scholar

[23] H. Luo, C. Xu, D.B. Zou, T.K. Ying. Mater. Lett. Vol. 62 (2008), p, 3558.

Google Scholar

[24] H.W. Liao, Y.F. Wang, S.Y. Zhang, Y.T. Qian. Chem. Mater. Vol. 13 (2001), p, 6.

Google Scholar

[25] X.L. Li, Y.D. Li. J. Phys. Chem. B Vol. 108 (2004), p, 13893.

Google Scholar

[26] J. Pütz, M.A. Aegerter. J. Sol-Gel. Sci. Techn. Vol. 19 (2000), p, 821.

Google Scholar

[27] S.J. Ding, D.Y. Zhang, J.S. Chen, X.W. Lou. Nanoscale Vol. 4 (2012), p, 95.

Google Scholar

[28] Q. Wang, J.H. Li, J. Phys. Chem. C Vol. 111 (2007), p, 1675.

Google Scholar

[29] J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, J. P. Lemmon. Chem. Mater. Vol. 22 (2010), p, 4522.

Google Scholar

[30] H. Li, L. Ma, W.X. Chen , J.M. Wang. Mater. Lett. Vol. 63 (2009), p.1363.

Google Scholar

[31] K. Chang, W.X. Chen, L. Ma, H. Li, H. Li, F. H Huang, Z.D. Xu, Q.B. Zhang , J.Y. Lee. J. Mater. Chem. Vol. 21 (2011), p, 6251.

Google Scholar

[32] K. Chang, W.X. Chen. J. Mater. Chem. Vol. 21 (2011), p, 17175.

Google Scholar

[33] H. Hwang, H.J. Kim, J.P. Cho. Nano. Lett. Vol. 11 (2011), p, 4826.

Google Scholar

[34] J.C. Wildervanck, F. Jellinek. Z Anorg. Allg. Chem. Vol. 328 (1964), p.309.

Google Scholar

[35] R.R. Chianelli, E.B. Prestridge, T.A. Pecoraro, J.P. Deneufville. Science Vol. 203 (1979), p.1105.

Google Scholar