[1]
D. Mumford, and J. Shah, Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems, Comm. Pure Applied Mathematics, 42(5): 577-685, (1989).
DOI: 10.1002/cpa.3160420503
Google Scholar
[2]
A. Chambolle. An algorithm for total variation minimization and applications. JMIV, 20: 89-97, (2004).
Google Scholar
[3]
L. Vese, and S. Osher, Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing, Journal of Scientific Computing, 19 (1-3), 553-572, (2003).
Google Scholar
[4]
L. Rudin, S. Osher, and E. Fatemi, Nonlinear Total Variation Based Noise Removal Algorithms, Physica D, 60: 259-268, (1992).
DOI: 10.1016/0167-2789(92)90242-f
Google Scholar
[5]
S. Osher, A. Sole, and L. Vese, Image Decomposition and Restoration Using Total Variation Minimization and Norm, Multiscale Modeling and Simulation 1 (3): 349-370, (2003).
DOI: 10.1137/s1540345902416247
Google Scholar
[6]
J. F. Aujol and A. Chambolle, Dual Norms and Image Decomposition Models, International Journal of Computer Vision 63(1): 85-104, (2005).
DOI: 10.1007/s11263-005-4948-3
Google Scholar
[7]
I. Daubechies and G. Teschke, Wavelet based image decomposition by variational functionals, Proc. SPIE Vol. 5266, pp.94-105, Wavelet Applications in Industrial Processing, Frederic Truchetet, Ed., (2004).
DOI: 10.1117/12.516051
Google Scholar
[8]
Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, Col. 22, Amer. Math. Soc., (2001).
DOI: 10.1090/ulect/022
Google Scholar
[9]
F. John and L. Nirenberg, On Functions of Bounded Mean Oscillation, Comm. Pure. Appl. Math., vol. 14, 415-547, (1999).
DOI: 10.1002/cpa.3160140317
Google Scholar
[10]
J. B. Garnett, T. M. Le, Y. Meyer and L. A. Vese, Image decomposition Using Bounded Variation and Homogeneous Besov Spaces, UCLA CAM Report 05-57, (2005).
Google Scholar
[11]
H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Verlag der Wissenschaften, Berlin, (1978).
Google Scholar
[12]
A. Chambolle, R. A. DeVore, N. Y. Lee, and B. J. Lucier, Nonlinear wavelet image processing: Variational problems, compression and noise removal through wavelet shrinkage, IEEE Transactions of Image Processing, Vol. 7, No. 3, pp.319-335, (1998).
DOI: 10.1109/83.661182
Google Scholar
[13]
D. Donoho, and I. Johnstone, Ideal spatial adaptation via wavlet shrinkage, Biometrika, 81: 425-455, (1994).
DOI: 10.1093/biomet/81.3.425
Google Scholar
[14]
Dirk A. Lorenz, Wavelet Shrinkage in Signal and Image Processing - An Investigation of Relations and Equivalences, Ph. D thesis, University of Bremen, (2005).
Google Scholar
[15]
L. Vese, and S. J. Osher, Image Denoising and Decomposition with Total Variation Minimization and Oscillatory Functions, Special Issue on Mathematics and Image Analysis, Journal of Mathematical Imaging and Vision, 20: 7-18, (2004).
DOI: 10.1023/b:jmiv.0000011316.54027.6a
Google Scholar
[16]
T. M. Le and L. A. Vese, Image Decomposition Using Total Variation and , Multiscale Model. Simul., 4(2): 390-423, (2005).
DOI: 10.1137/040610052
Google Scholar
[17]
Tieyong Zeng and Michael K. Ng. Correspondence—on the total variation Dictionary Model. IEEE Trans. Image Processing. 19(3): 821-825, (2010).
DOI: 10.1109/tip.2009.2034701
Google Scholar
[18]
W. Yin, S. Osher, D. Goldfarb and J. Darbon. Bregman iterative algorithms for l1-minimization with application to compressed sensing. SIAM J. Imag. Sci. 1(1): 143-146, (2008).
DOI: 10.1137/070703983
Google Scholar