Wavelet Shrinkage Based Variational Image Decomposition Model

Article Preview

Abstract:

A new class of variational models based on Besov spaces B1,1s (s>0 ) and homogeneous Besov space E=B∞,∞-1 for image decomposition is proposed. The proposed models can be regarded as generalizations of Aujol-Chambolle model. The associated minimizers of variational problems can be expressed by applying different shrinkage functions which depend on the wavelet scale to each wavelet coefficient. The wavelet based treatment simplifies computation of this class of variational models. Finally, we present numerical results on denoising of both real and remote sensing images.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 532-533)

Pages:

1021-1025

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Mumford, and J. Shah, Optimal Approximations by Piecewise Smooth Functions and Associated Variational Problems, Comm. Pure Applied Mathematics, 42(5): 577-685, (1989).

DOI: 10.1002/cpa.3160420503

Google Scholar

[2] A. Chambolle. An algorithm for total variation minimization and applications. JMIV, 20: 89-97, (2004).

Google Scholar

[3] L. Vese, and S. Osher, Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing, Journal of Scientific Computing, 19 (1-3), 553-572, (2003).

Google Scholar

[4] L. Rudin, S. Osher, and E. Fatemi, Nonlinear Total Variation Based Noise Removal Algorithms, Physica D, 60: 259-268, (1992).

DOI: 10.1016/0167-2789(92)90242-f

Google Scholar

[5] S. Osher, A. Sole, and L. Vese, Image Decomposition and Restoration Using Total Variation Minimization and Norm, Multiscale Modeling and Simulation 1 (3): 349-370, (2003).

DOI: 10.1137/s1540345902416247

Google Scholar

[6] J. F. Aujol and A. Chambolle, Dual Norms and Image Decomposition Models, International Journal of Computer Vision 63(1): 85-104, (2005).

DOI: 10.1007/s11263-005-4948-3

Google Scholar

[7] I. Daubechies and G. Teschke, Wavelet based image decomposition by variational functionals, Proc. SPIE Vol. 5266, pp.94-105, Wavelet Applications in Industrial Processing, Frederic Truchetet, Ed., (2004).

DOI: 10.1117/12.516051

Google Scholar

[8] Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations, University Lecture Series, Col. 22, Amer. Math. Soc., (2001).

DOI: 10.1090/ulect/022

Google Scholar

[9] F. John and L. Nirenberg, On Functions of Bounded Mean Oscillation, Comm. Pure. Appl. Math., vol. 14, 415-547, (1999).

DOI: 10.1002/cpa.3160140317

Google Scholar

[10] J. B. Garnett, T. M. Le, Y. Meyer and L. A. Vese, Image decomposition Using Bounded Variation and Homogeneous Besov Spaces, UCLA CAM Report 05-57, (2005).

Google Scholar

[11] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Verlag der Wissenschaften, Berlin, (1978).

Google Scholar

[12] A. Chambolle, R. A. DeVore, N. Y. Lee, and B. J. Lucier, Nonlinear wavelet image processing: Variational problems, compression and noise removal through wavelet shrinkage, IEEE Transactions of Image Processing, Vol. 7, No. 3, pp.319-335, (1998).

DOI: 10.1109/83.661182

Google Scholar

[13] D. Donoho, and I. Johnstone, Ideal spatial adaptation via wavlet shrinkage, Biometrika, 81: 425-455, (1994).

DOI: 10.1093/biomet/81.3.425

Google Scholar

[14] Dirk A. Lorenz, Wavelet Shrinkage in Signal and Image Processing - An Investigation of Relations and Equivalences, Ph. D thesis, University of Bremen, (2005).

Google Scholar

[15] L. Vese, and S. J. Osher, Image Denoising and Decomposition with Total Variation Minimization and Oscillatory Functions, Special Issue on Mathematics and Image Analysis, Journal of Mathematical Imaging and Vision, 20: 7-18, (2004).

DOI: 10.1023/b:jmiv.0000011316.54027.6a

Google Scholar

[16] T. M. Le and L. A. Vese, Image Decomposition Using Total Variation and , Multiscale Model. Simul., 4(2): 390-423, (2005).

DOI: 10.1137/040610052

Google Scholar

[17] Tieyong Zeng and Michael K. Ng. Correspondence—on the total variation Dictionary Model. IEEE Trans. Image Processing. 19(3): 821-825, (2010).

DOI: 10.1109/tip.2009.2034701

Google Scholar

[18] W. Yin, S. Osher, D. Goldfarb and J. Darbon. Bregman iterative algorithms for l1-minimization with application to compressed sensing. SIAM J. Imag. Sci. 1(1): 143-146, (2008).

DOI: 10.1137/070703983

Google Scholar