[1]
F. Alizadeh and D. Goldfarb, Second-order cone programming, Mathematical Programming, Ser. B, Vol. 95(2003), pp.3-51.
DOI: 10.1007/s10107-002-0339-5
Google Scholar
[2]
D. F. Sun and J. Sun, Strong semismoothness of the Fischer-Burmeister SDC and SOC complementarity functions, Mathematical Programming, Ser. A, Vol. 103(2005), pp.575-581.
DOI: 10.1007/s10107-005-0577-4
Google Scholar
[3]
M. Fukushima, Z. Q. Luo and P. Tseng, Smoothing functions for second-order-cone complementarity problems, SIAM Journal on Optimization, Vol. 12(2) (2001), pp.436-460.
DOI: 10.1137/s1052623400380365
Google Scholar
[4]
L. Qi, D. Sun and G. Zhou, A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities, Mathematical Programming, Ser. A, Vol. 87(2000), pp.1-35.
DOI: 10.1007/s101079900127
Google Scholar
[5]
L. Fang, G. P. He and Y. H. Hu, A new smoothing Newton-type method for second-order cone programming problems, Applied Mathematics and Computation, Vol. 215(2009), pp.1020-1029.
DOI: 10.1016/j.amc.2009.06.029
Google Scholar
[6]
L. Qi and J. Sun, A nonsmooth version of Newton's method, Mathematical Programming, Vol. 58(1993), pp.353-367.
DOI: 10.1007/bf01581275
Google Scholar
[7]
G. Pataki and S. Schmieta, The DIMACS library of semidefinte-quadratic-linear programs, Technical report, Computational Optimization Research Center, Columbia University, 2002, Available at http: /dimacs. rutgers. edu/Challenges/Seventh/ Instances.
Google Scholar
[8]
Sh. -H. Pan and J. -Sh. Chen, A semismooth Newton method for SOCCPs based on a one-parametric class of SOC complementarity functions, Computational Optimization and Applications, Vol. 45(2010), pp.59-88.
DOI: 10.1007/s10589-008-9166-9
Google Scholar