Modified N Doped TiO2 Nanotubes with Magnetic γ-Fe2O3 as Visible Light Photocatalysts

Article Preview

Abstract:

γ-Fe2O3/N-doped TiO2 nanotubes (N-TiO2 NTs) photocatalyst was successfully prepared by a wet chemical method. Visible light responses of this novel catalyst for decomposing methyl orange (MO) in air were also evaluated. It was found that the photocatalytic activity of γ-Fe2O3/N-TiO2 NTs was higher than those of N-doped TiO2 NTs, TiO2 NTs and P25. The characterizations including TEM, EDX and UV/Vis DRS revealed that iron oxide nanoparticles were decorated in/around N-TiO2 NTs and the spectral response was enhanced in visible region. Meanwhile, the catalyst recycled by external magnetic field showed that its photocatalytic efficiency did not decrease obviously.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 532-533)

Pages:

20-24

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] X. Chen, S. S. Mao: Chem. Rev. Vol. 107 (2007), p.2891.

Google Scholar

[2] J. Zhang, Y. Wu, M. Xing, S.A.K. Leghari and S. Sajjad: Energy Environ. Sci. Vol. 3 (2010), p.715.

Google Scholar

[3] H. Hao, J. Zhang: Microporous Mesoporous Mater. Vol. 121 (2009), p.52.

Google Scholar

[4] Y. -C. Nah, I. Paramasivam and P. Schmuki: ChemPhysChem Vol. 11 (2010), p.2698.

Google Scholar

[5] S. So, K. Lee and P. Schmuki: Phys. Status Solidi-R. Vol. 6 (2012), p.169.

Google Scholar

[6] C. Das, I. Paramasivam, N. Liu and P. Schmuki: Electrochim. Acta Vol. 56 (2011), p.10557.

Google Scholar

[7] L. Deng, Y. Chen, M. Yao, S. Wang, B. Zhu, W. Huang and S. Zhang: J. Sol-Gel Sci. Technol. Vol. 53 (2010), p.535.

Google Scholar

[8] S. Bai, H. Li, Y. Guan and S. Jiang: Appl. Surf. Sci. Vol. 257 (2011), p.6406.

Google Scholar

[9] J. Geng, D. Yang, J. Zhu, D. Chen and Z. Jiang: Mater. Res. Bull. Vol. 44 (2009), p.146.

Google Scholar

[10] S. Zhang, F. Peng, H. Wang, H. Yu, S. Zhang, J. Yang and H. Zhao: Catal. Commun. Vol. 12 (2011), p.689.

Google Scholar

[11] J. Wang, B. Huang, Z. Wang, X. Qin and X. Zhang: Rare Met. Vol. 30 (2011), p.161.

Google Scholar

[12] B. Gao, Y. Ma, Y. Cao, W. Yang and J. Yao: J. Phys. Chem. B Vol. 110 (2006), p.14391.

Google Scholar

[13] V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara and J. -M. Basset: Chem. Rev. Vol. 111 (2011), p.3036.

DOI: 10.1021/cr100230z

Google Scholar

[14] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: Langmuir Vol. 14 (1998), p.3160.

DOI: 10.1021/la9713816

Google Scholar

[15] H. Tokudome, M. Miyauchi: Chem. Lett. Vol. 33 (2004), p.1108.

Google Scholar

[16] C. Guo, J. Xu, Y. He, Y. Zhang and Y. Wang: Appl. Surf. Sci. Vol. 257 (2011), p.3798.

Google Scholar

[17] C. -T. Yip, M. Guo, H. Huang, L. Zhou, Y. Wang and C. Huang: Nanoscale Vol. 4 (2012), p.448.

Google Scholar

[18] X. Fan, F. Tan, G. Zhang and F. Zhang: Mater. Sci. Eng., A Vol. 454-455 (2007), p.37.

Google Scholar

[19] Z. Bian, J. Zhu, S. Wang, Y. Cao, X. Qian and H. Li: J. Phys. Chem. C Vol. 112 (2008), p.6258.

Google Scholar