[1]
Samuel G. Armato III, PbD. Maryellen L. Giger, PbD. Catberine J. Moran, et al. Computerized Detection of Pulmonary Nodules on CT Scans. IMAGING&THERAPEUTIC TECHNOLOGY. 1999: 1303-1311.
DOI: 10.1148/radiographics.19.5.g99se181303
Google Scholar
[2]
Antonelli M, Lazzerini B, Marcelloni F. Segmentation and reconstruction of the lung volume in CT images. 20th annual ACM symposium on applied computing. 2005: 255-259.
DOI: 10.1145/1066677.1066738
Google Scholar
[3]
Dehmeshki J, Ye X, Valdivieso M. Automated detection of lung nodules in CT images using shape-based genetic algorithm. Compute Med Imaging Graph. 2007, 1(6)408-417.
DOI: 10.1016/j.compmedimag.2007.03.002
Google Scholar
[4]
M. Arfan Jaffar, Ayyaz Hussain, Anwar Majid Mirza. Fuzzy entropy based optimization of clusters for the segmentation of lungs in CT scanned images. Knowledge and Information Systems. 2009, 6: 1-21.
DOI: 10.1007/s10115-009-0225-z
Google Scholar
[5]
Bezdek JC. Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York. (1981).
Google Scholar
[6]
Kenji Suzuki, Samuel G. Armato III, Feng Li, et al. Massive Training Artificial Neural Network(MTANN) for Reduction of False Positives in Computerized Detection of Lung Nodules in Low-dose Computed Tomography. Med. Phys. 2006, 30(7): 1602-1617.
DOI: 10.1118/1.1580485
Google Scholar
[7]
Da Sliva. Cleriston Arauio, Silva. Aristofanes Correa, Netto. Steimo Magalhaes Barros, et al. Lung nodules classification in CT images using simpson's index, geometrical measures and one-class SVM. 6th International Conference on Machine Learning and Data Mining in Pattern Recognition, MLDM. 2009: 810-822.
DOI: 10.1007/978-3-642-03070-3_61
Google Scholar
[8]
Liang Tan Koik, Tanaka. Toshiyuki, Nakamura. Hidetoshi, et al. A neural network based computer-aided diagnosis of emphysema using CT lung images. Proceedings of SICE Annual Conference. 2007: 703-709.
DOI: 10.1109/sice.2007.4421073
Google Scholar
[9]
J Yang, D Zhang, A F Frangi, J Y Yang. Two-dimensional PCA: a new approach to appearance based face representation and recognition. IEEE Trans PAMI, 2004, 26(1): 131-137.
DOI: 10.1109/tpami.2004.1261097
Google Scholar