[1]
J. Vogel and B. Schiele. Semantic modeling of natural scenes for content-based image retrieval. International Journal of Computer Vision, Vol. 2 (2007), pp.133-157.
DOI: 10.1007/s11263-006-8614-1
Google Scholar
[2]
A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the spatial envelope. International Journal of Computer Vision, Vol. 3 (2001), pp.145-175.
Google Scholar
[3]
L. Fei-Fei and P. Perona. A bayesian hierarchical model for learning natural scene categories. Proc. of IEEE Computer Vision and Pattern Recognition (2005), pp.524-531.
DOI: 10.1109/cvpr.2005.16
Google Scholar
[4]
J. Sivic, B. Russell, A. Efros, A. Zisserman, and W. Freeman. Discovering object categories in image collections. In Proc. of the 10th IEEE International Conference on Computer Vision, Beijing, China (2005), pp.370-377.
DOI: 10.1109/iccv.2005.77
Google Scholar
[5]
Erik B. Sudderth, Antonio Torralba, William T. Freeman and Alan S. Willsky. Describing visual scenes using transformed objects and parts. International Journal of Computer Vision, (2008).
DOI: 10.1007/s11263-007-0069-5
Google Scholar
[6]
B. Russell, A. Efros, J. Sivic, W. Freeman, and A. Zisserman. Using multiple segmentations to discover objects and their Extent in image collections. CVPR, (2006).
DOI: 10.1109/cvpr.2006.326
Google Scholar
[7]
J. Shi and J. Malik. Normalized Cuts and Image Segmentation. TPAMI, Vol. 8 (2000), pp.888-905.
Google Scholar
[8]
Mikolajczyk K and Schmid C. An affine invariant interest point detector. In Proceedings of the 8th International Conference on Computer Vision, Vancouver, Canada (2002).
Google Scholar
[9]
Matas J, Chum O, Urban M and Pajdla T. Robust wide baseline stereo from maximally stable extremal regions, BMVC (2002).
DOI: 10.5244/c.16.36
Google Scholar
[10]
Lowe D G. Object recognition from local scale-invariant features. In International Conference on Computer Vision, Corfu, Greece (1999).
DOI: 10.1109/iccv.1999.790410
Google Scholar
[11]
D. Blei and A. Ng, M. Jordan. Latent dirichlet allocation. Journal of Machine Learning Research, Vol. 3 (2003), pp.993-1022.
Google Scholar
[12]
Cao Juan, Xia Tian, Jin-Tao, et al. A density-based method for adaptive LDA model selection. Neurocomputing, Vol. 7-9 (2009), pp.1775-1781.
DOI: 10.1016/j.neucom.2008.06.011
Google Scholar