[1]
M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, International Journal of Computer Vision 1 (1988) 321-331.
DOI: 10.1007/bf00133570
Google Scholar
[2]
V. Casslles, R. Kimmel, G. Sapiro, Geodesic Active contours, in: Processing of IEEE International Conference on Computer Vision'95, Boston, MA, 1995, pp.694-699.
DOI: 10.1109/iccv.1995.466871
Google Scholar
[3]
V. Casslles, R. Kimmel, G. Sapiro, Geodesic Active contours, International Journal of Computer Vision 22(1)(1997)61-79.
Google Scholar
[4]
G. P. Zhu, Sh. Q. Zhang, Q, SH. Zeng, Ch. H. Wang, Boundary-based image segmentation using binary level set method, SPIE OE Letters 46(5)(2007).
Google Scholar
[5]
T. Chan, L. Vese, Active contour without edges, IEEE Transaction on Image Processing 10(2)(2001)266-277.
DOI: 10.1109/83.902291
Google Scholar
[6]
J. Lie, M. Lysaker, X. C. Tai, A binary level set model and some application to Mumford-Shah image segmentation, IEEE Transaction on Image Processing 15(2006)1171-1181.
DOI: 10.1109/tip.2005.863956
Google Scholar
[7]
C. M. Li, C. Y. Xu, C. F. Gui, M. D. Fox, Level set evolution without re-initialization: a new va- riational formulation, in: IEEE Conference on Computer Vision and Pattern Recognition, San Diego, 2005, pp.430-436.
DOI: 10.1109/cvpr.2005.213
Google Scholar
[8]
C. M. Li, C. Kao, J. Gore, Z. Ding, Implicit active contours driven by local binary fitting energy, in: IEEE Conference on Computer Vision and Pattern Recognition, (2007).
DOI: 10.1109/cvpr.2007.383014
Google Scholar
[9]
C. M. Li, C. Kao, J. Gore, Z. Ding, Minimization of region-scalable fitting energy for image seg- mentation, IEEE Transactions on Image Processing 17(2008)1940-(1949).
DOI: 10.1109/tip.2008.2002304
Google Scholar
[10]
N. Paragios, R. Deriche, Geodesic active contours and level sets for detection and tracking of m- oving objects, IEEE Transaction on Pattern Anahysis and Machine Intelligence 22(2000)1-15.
DOI: 10.1109/34.841758
Google Scholar
[11]
N. Paragios, R. Deriche, Geodesic active regions and level set methods for supervised texture se- gmentaion, International Journal of Computer Vision 46(2002)223-293.
DOI: 10.1109/iccv.1999.790347
Google Scholar
[12]
R. Malladi, J. A. Sethian, B. C. Vemuri, Shape modeling with front propagation: a level set app- roach, IEEE Transaction on Pattern Analysis and Machine Intelligence 17(1995)158-175.
DOI: 10.1109/34.368173
Google Scholar
[13]
A. Tsai, A. Yezzi, A. S. Willsky, Curve evolution implementation of the Mumford-Shah func- tional for image segmentation, denoising, interpolation, and magnification, IEEE transaction on Image Processing 10 (2001)1169-1186.
DOI: 10.1109/83.935033
Google Scholar
[14]
L. A. Vese, T. F. Chan, A multiphase level set framework for image segmentation using the Mumford-Shah model, International Journal of Computer Vision 50(2002)271-293.
Google Scholar
[15]
R. Ronfard, Region-based strategies for active contour models, International Journal of Com- puter Vision 46 (2002) 223-247.
Google Scholar
[16]
H. Liu, Y. Chen, W. Chen, Neighborhood aided implicit active contours, IEEE Conference on Computer Vision and Pattern Recognition 1(2006)841-848.
DOI: 10.1109/cvpr.2006.205
Google Scholar
[17]
A. Vasilevskiy, K. Siddiqi, Flux-maximizing geometric flows, IEEE Transaction on Pattern An- alysis and Machine Intelligence 24(2002)1565-1578.
DOI: 10.1109/tpami.2002.1114849
Google Scholar
[18]
D. Mumford, J. Shah, Optimal approximation by piecewise smooth function and associated va- riational problems, Communication on Pure and Pure and Applied Mathematics 42(1989) 577- 685.
DOI: 10.1002/cpa.3160420503
Google Scholar