Active Contour Driven by Edge and Region Image Fitting Energy

Abstract:

Article Preview

In this paper, we propose a novel edge and region-based active contour model. We consider geodesic curve and region-based model, and evolve a contour based on global information. Moreover, we add to the level set regularization term in the energy functional to ensure accurate computation and avoids expensive re-initialization of the level set function. Experiments on synthetic and real images show desirable performances of our method.

Info:

Periodical:

Advanced Materials Research (Volumes 532-533)

Edited by:

Suozhang Cai and Mingli Li

Pages:

892-896

DOI:

10.4028/www.scientific.net/AMR.532-533.892

Citation:

H. Y. Xu and M. H. Liu, "Active Contour Driven by Edge and Region Image Fitting Energy", Advanced Materials Research, Vols. 532-533, pp. 892-896, 2012

Online since:

June 2012

Export:

Price:

$38.00

[1] M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models, International Journal of Computer Vision 1 (1988) 321-331.

DOI: 10.1007/bf00133570

[2] V. Casslles, R. Kimmel, G. Sapiro, Geodesic Active contours, in: Processing of IEEE International Conference on Computer Vision'95, Boston, MA, 1995, pp.694-699.

[3] V. Casslles, R. Kimmel, G. Sapiro, Geodesic Active contours, International Journal of Computer Vision 22(1)(1997)61-79.

[4] G. P. Zhu, Sh. Q. Zhang, Q, SH. Zeng, Ch. H. Wang, Boundary-based image segmentation using binary level set method, SPIE OE Letters 46(5)(2007).

[5] T. Chan, L. Vese, Active contour without edges, IEEE Transaction on Image Processing 10(2)(2001)266-277.

DOI: 10.1109/83.902291

[6] J. Lie, M. Lysaker, X. C. Tai, A binary level set model and some application to Mumford-Shah image segmentation, IEEE Transaction on Image Processing 15(2006)1171-1181.

DOI: 10.1109/tip.2005.863956

[7] C. M. Li, C. Y. Xu, C. F. Gui, M. D. Fox, Level set evolution without re-initialization: a new va- riational formulation, in: IEEE Conference on Computer Vision and Pattern Recognition, San Diego, 2005, pp.430-436.

DOI: 10.1109/cvpr.2005.213

[8] C. M. Li, C. Kao, J. Gore, Z. Ding, Implicit active contours driven by local binary fitting energy, in: IEEE Conference on Computer Vision and Pattern Recognition, (2007).

DOI: 10.1109/cvpr.2007.383014

[9] C. M. Li, C. Kao, J. Gore, Z. Ding, Minimization of region-scalable fitting energy for image seg- mentation, IEEE Transactions on Image Processing 17(2008)1940-(1949).

DOI: 10.1109/tip.2008.2002304

[10] N. Paragios, R. Deriche, Geodesic active contours and level sets for detection and tracking of m- oving objects, IEEE Transaction on Pattern Anahysis and Machine Intelligence 22(2000)1-15.

DOI: 10.1109/34.841758

[11] N. Paragios, R. Deriche, Geodesic active regions and level set methods for supervised texture se- gmentaion, International Journal of Computer Vision 46(2002)223-293.

DOI: 10.1109/iccv.1999.790347

[12] R. Malladi, J. A. Sethian, B. C. Vemuri, Shape modeling with front propagation: a level set app- roach, IEEE Transaction on Pattern Analysis and Machine Intelligence 17(1995)158-175.

DOI: 10.1109/34.368173

[13] A. Tsai, A. Yezzi, A. S. Willsky, Curve evolution implementation of the Mumford-Shah func- tional for image segmentation, denoising, interpolation, and magnification, IEEE transaction on Image Processing 10 (2001)1169-1186.

DOI: 10.1109/83.935033

[14] L. A. Vese, T. F. Chan, A multiphase level set framework for image segmentation using the Mumford-Shah model, International Journal of Computer Vision 50(2002)271-293.

[15] R. Ronfard, Region-based strategies for active contour models, International Journal of Com- puter Vision 46 (2002) 223-247.

[16] H. Liu, Y. Chen, W. Chen, Neighborhood aided implicit active contours, IEEE Conference on Computer Vision and Pattern Recognition 1(2006)841-848.

DOI: 10.1109/cvpr.2006.205

[17] A. Vasilevskiy, K. Siddiqi, Flux-maximizing geometric flows, IEEE Transaction on Pattern An- alysis and Machine Intelligence 24(2002)1565-1578.

DOI: 10.1109/tpami.2002.1114849

[18] D. Mumford, J. Shah, Optimal approximation by piecewise smooth function and associated va- riational problems, Communication on Pure and Pure and Applied Mathematics 42(1989) 577- 685.

DOI: 10.1002/cpa.3160420503

In order to see related information, you need to Login.