Ascertainment of the Figure of Merit for the State-of-the-Art Thermoelectric Materials via Temperature

Article Preview

Abstract:

An effective numerical method to predict quantitatively the relation between the dimensionless figure of merit of the state-of-the-art thermoelectric materials with the temperature was investigated by look around for some fitting mathematical functions. The simulative results agree with the observed data very well that the minimum correlation coefficient and the maximum average relative errors between them are 0.9767 and 4.35 % respectively. The high light of this work is that the regular pattern of the dimensionless figure of merit of the state-of-the-art thermoelectric materials dependence temperature appears Gaussian. This conclusion may be an available tip to the the theoretical physicist to build or modify some theoretical model that used to explain the physical mechanisms of the thermoelectric materials.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

1346-1349

Citation:

Online since:

June 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. S.Nolas, J.Poon, M.Kanatzidis: Mater. Res. Soc. Bull. Vol.,31(2006), p.199.

Google Scholar

[2] D.Y. Chung, L.Iordanidis, K.S. Choi, M.G. Kanatzidis:Bull. Korean Chem. Soc., Vol.19(1998), p.1283.

Google Scholar

[3] D. M.Rowe :Renewable Energy, Vol.16(1999), p.1251.

Google Scholar

[4] B. C.Sales:. Mater. Res. Soc. Bull., Vol.23(1998), p.15.

Google Scholar

[5] C.Wood: Rep. Prog. Phys., Vol.51(1988), p.459.

Google Scholar

[6] P. Rodgers: Nature Nanotechnology, Vol.3(2008), p.76.

Google Scholar

[7] F. D. Rosi: Solid-State Electron., Vol.11(1968), p.833.

Google Scholar

[8] F. D.Rosi, E. F.Hockings, N. E.Lindenblad: RCA Rev. Vol. 22(1961), p.82.

Google Scholar

[9] H. J.Goldsmid, R.W. Douglas: Brit. J. Appl. Phys. Vol.5(1954), p.386.

Google Scholar

[10] A.Bulusu, D.Walker: Superlattices and Microstructures, Vol.44(2008) , p.1.

Google Scholar

[11] W. M.Yim, E. V.Fitzke, F. D Rosi: J. Mater. Sci., Vol. 1(1966), p.52.

Google Scholar

[12] Y.Gelbstein, Z.Dashevsky, M. P.Dariel: Physica B, Vol. 363(2005), p.196.

Google Scholar

[13] C.B. Vining, W.Laskow, J.O. Hanson, R.R. Vanderbeck, P.D. Gorsuch: J. Appl. Phys., Vol. 69(1991), p.4333.

Google Scholar

[14] K. F.Hsu, S.Loo, F.Guo, Science, Vol.303(2004), p.818.

Google Scholar

[15] G. J. Snyder: Appl. Phys. Lett., Vol.84(2004), p.2436.

Google Scholar

[16] G. J.Snyder, E. S.Tobere: Nature Materials ,Vol.7(2008), p.105.

Google Scholar