DFT Study on Structures, Stabilities and Electronic Properties of Tert-Butyl Silsesquioxanes Si2nO3n(CMe3)2n (n=1-6)

Article Preview

Abstract:

Density functional theory (DFT) calculations were performed to investigate the structures of tert-butyl silsesquioxanes Si2nO3n(CMe3)2n (n=1-6). Our study focuses on the structures, stabilities, and electronic properties of the tert-butyl silsesquioxanes. The large HOMO–LUMO gaps, which range from 5.68 to 6.99 eV, imply optimal electronic structures for these molecules.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

1552-1555

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.D. Lickiss, F. Rataboul: Adv. Organomet. Chem. Vol. 57 (2008), p.1.

Google Scholar

[2] D.B. Cordes, P.D. Lickiss and F. Rataboul: Chem. Rev. Vol. 110 (2010), p.2081.

Google Scholar

[3] T.C. Ionescu, F. Qi, C. McCabe, A. Striolo, J. Kieffer and P.T. Cummings: J. Phys. Chem. B Vol. 110 (2006), p.2502.

Google Scholar

[4] A. Lee, J.D. Lichtenhan: J. Appl. Polym. Sci. Vol. 73 (1999), p.1993.

Google Scholar

[5] F.J. Feher, D.A. Newman and J.F. Walzer: J. Am. Chem. Soc. Vol. 111 (1989), p.1741.

Google Scholar

[6] N. Maxim, P.C. Magusin, P.J. Kooyman, J.H. van Wolput, R.A. van Santen and H.C.L. Abbenhuis: J. Phys. Chem. B Vol. 106 (2002), p.2203.

Google Scholar

[7] A.R. Bassindale, D.J. Parker, M. Pourny, P.G. Taylor, P.N. Horton and M.B. Hursthouse: Organometallics Vol. 23 (2004), p.4400.

Google Scholar

[8] J. Choi, J. Harcup, A.F. Yee, Q. Zhu and R.M. Laine: J. Am. Chem. Soc. Vol. 123 (2001), p.11420.

Google Scholar

[9] A. Sellinger, R.M. Laine: Macromolecules Vol. 29 (1996), p.2327.

Google Scholar

[10] J. Choi, S.G. Kim and R.M. Laine: Macromolecules Vol. 37 (2004), p.99.

Google Scholar

[11] M.Z. Asuncion, R.M. Laine: Macromolecules Vol. 40 (2007), p.555.

Google Scholar

[12] P.D. Lickiss, F. Rataboul: Adv. Organomet. Chem. Vol. 57 (2008), p.1.

Google Scholar

[13] D.A. Wann, R.J. Less, F. Rataboul, P.D. McCaffrey, A.M. Reilly, H.E. Robertson, P.D. Lickiss and D.W.H. Rankin: Organometallics Vol. 27 (2008), p.4183.

DOI: 10.1021/om800357t

Google Scholar

[14] D.A. Wann, C.N. Dickson, P.D. Lickiss, H.E. Robertson and D.W.H. Rankin: Inorg. Chem. Vol. 50 (2011), p.2988.

Google Scholar

[15] A.V. Zakharov, S.L. Masters, D.A. Wann, S.A. Shlykov, G.V. Girichev, S. Arrowsmith, D.B. Cordes, P.D. Lickiss and A.J.P. White: Dalton Trans. Vol. 39 (2010), p.6893.

DOI: 10.1039/c000664e

Google Scholar

[16] C.-G. Zhang, R.W. Zhang, Z.-X. Wang, Z. Zhou, S.B. Zhang and Z.F. Chen: Chem. Eur. J. Vol. 15 (2009), p.5910.

Google Scholar

[17] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, et al., Gaussian03, revision E.01. Gaussian, Inc., Wallingford, CT (2004).

Google Scholar