Synthesis of Carbon Nanofiber-Titania-Cordierite Monolith Composite and its Application as Catalyst Support on Citral Hydrogenation

Article Preview

Abstract:

We reported the synthesis of a promising carbon nanofiber-titania-cordierite monolith composite (C/TiO2/monolith) and its application in citral hydrogenation. The composite was synthesized through two steps: TiO2 coating on the surface of the monolith with sol-gel method and the following carbon deposit by methane decomposition. C/TiO2/monolith was subsequently employed to prepare its supported palladium catalyst, Pd/C/TiO2/monolith and its catalytic performance was evaluated in selective hydrogenation of citral. Results revealed that 2.0 wt% tetrabutyl titanate sol in composite synthesis was the best in improving textural properties of C/TiO2/monolith. The optimal composite possessed a BET surface area of 39.4 m2/g and micropore area accounted for only 3.8% of its total BET surface area. It contained about 30 wt% of carbon, which was mainly composed of carbon nanofiber. Pd/C/TiO2/monolith exhibited the high citronellal selectivity (81%) at 90% citral conversion, which was attributed to the decrease of internal diffusion limitation due to its mesoporous structure.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

178-185

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Kiwi-Minsker, I. Yuranov, V. Höller, A.Renken: Chem. Eng. Sci. Vol. 54 (1999), p.4785

DOI: 10.1016/s0009-2509(99)00195-5

Google Scholar

[2] Q. Y. Liu, Z. Y. Liu, W. Z. Wu: Catal. Today Vol. 147 (2009), p. S285

Google Scholar

[3] P. Avila, M. Montes, E. E. Miro: Chem. Eng. J. Vol. 109 (2005), p.11

Google Scholar

[4] Q. F. Zhu, Y. Fu, L. X. Wen, J. F. Chen: J. Beijing Univ. Chem. Tech. (Nat. Sci. Ed.) Vol. 37 (2010), p.17 (In Chinese)

Google Scholar

[5] J. Y. Tian, J. S. Lu, H. Wu: J. Chem. Eng. Chin. Univ. Vol. 24 (2010), p.167 (In Chinese)

Google Scholar

[6] F. Z. Zhao, G. H. Zhang, P. H. Zeng, X. Yang, S. F. Ji: Chin. J. Catal. Vol. 32 (2011), p.821

Google Scholar

[7] K. P. D. Jong, J. W. Geus: Catal. Rev. Sci. Eng. Vol. 42 (2000), p.481

Google Scholar

[8] W. Z. Li, C. H. Liang, J. S. Qiu, W. J. Zhou, H. M. Han, Z. B. Wei, G. Q. Sun, Q. Xin: Carbon Vol. 40 (2002), p.791

Google Scholar

[9] N. M. Rodriguez: J. Mater. Res. Vol. 8 (1993), p.29

Google Scholar

[10] A. Jung, A. Jess, T. Schubert, W. Schütz: Appl. Catal. A: Gen. Vol. 362 (2009), p.95

Google Scholar

[11] Q. H. Tian, G. L. Zhao, G. R. Han: J. Inorg. Mater. Vol. 19 (2004), p.147

Google Scholar

[12] T.Tsoufis, P. Xidas, L. Jankovic, D. Gournis, A. Saranti, T. Bakas, M. A. Karakassides: Diam. Relat. Mater. Vol. 16 (2007), p.155

DOI: 10.1016/j.diamond.2006.04.014

Google Scholar

[13] J. M. Wu, J. J. Yao, H. P. Yang, Y. N. Fan, B. L. Xu: Acta. Chim. Sinica. Vol. 68 (2010), p.1349

Google Scholar

[14] A. Vicente, T. Ekou, G. Lafaye, C. Especel, P. Marécot, C. T. Williams: J. Catal. Vol. 275 (2010), p.202

Google Scholar