Sol-Gel Preparation and Characterization of SiO2/TiO2 Composite Mesoporous Materials with Bacterial Cellulose for Photocatalysis of Methyl Orange

Article Preview

Abstract:

SiO2/TiO2 composite mesoporous materials prepared by sol-gel method with bacterial cellulose(BC)as a surface esterification agent and porous template was as photocatalyst in the degradation of methyl orange(MO)in water under UV- irradiation. The results show that the best heat treatment condition is at 600°Cfor 3 h and the optimum content of SiO2 is 30% (30 denotes the weight percent of SiO2). The photoactivity of 30SiO2/TiO2 catalyst prepared with BC was much better than that of reference catalyst prepared with no BC. An addition of BC not only raises the adsorbability of the photocatalyst, but also effectively inhibits anatase-rutile transformation and effectively induce amorphous-anatase transformation of TiO2. The BET surface area of 30%SiO2/TiO2 composite mesoporous materials was the largest. The resulting mesoporous materials showed a high photocatalytic activity for the photodegradation of methyl orange in the UV-irradiation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

2181-2185

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Houas, H. Lachheb,M. Ksibi, E. Elaloui, C. Guillard and J.-M. Herrmann: Appl. Catal. B: Environ. Vol. 31 (2001), p.145

Google Scholar

[2] Y. Yang, Y. Guo, C. Hu, Y. Wang and E. Wang: Appl. Catal. A: Gen. Vol. 273 (2004), p.201

Google Scholar

[3] M. Sleiman, P. Conchon, C. Ferronato and J.-M. Chovelon: Appl. Catal. B: Environ. Vol.71(2006), p.279

Google Scholar

[4] M. Tamimi, S. Qourzal, A. Assabbane, J.-M. Chovelon, C. Ferronato and Y. Ait-Ichou: Photochem. Photobiol. Sci. Vol. 5 (2006), p.477

DOI: 10.1039/b517105a

Google Scholar

[5] I. Sopyan, M. Watanabe, S. Murasawa, K. Hashimoto and A. Fujishima: J. Photochem. Photobiol. A: Chem. Vol. 98 (1996). p.79

Google Scholar

[6] A. Rachel, M. Subrahmanyam and P. Boule: Appl. Catal. B: Environ. Vol. 37 (2002), p.301

Google Scholar

[7] Yuehua Xu, Bo Lei, Laiqiu Guo,Wuyi Zhou and Youqin Liu: J. Hazard. Mate. Vol. 160 (2008), p.78

Google Scholar

[8] H. Nishikawa and Y. Takahara: J. Mol. Catal. A: Chem. Vol. 172 (2001), p.247

Google Scholar

[9] R.V. Grieken, J. Aguado, M.J. López-Muñoz and J. Marugán: J. Photochem. Photobiol. A:Chem. Vol. 148 (2002), p.315

Google Scholar

[10] T. Tanaka, K. Teramura, T. Yamamoto, S. Takenaka, S. Yoshida and T. Funabiki, J. Photochem.Photobiol. A: Chem. Vol. 148 (2002), p.277

Google Scholar

[11] Z.Deng, J.Wang, Y. Zhang, Z.Weng, Z. Zhang , B.Zhou, J.Shen and L.Cheng: Nano-Structured Mater. Vol. 11 (1999), p.1313

Google Scholar

[12] R. Vogel, P. Hoyer and H. Weller: J. Phys. Chem. Vol. 98(1994), p.3183

Google Scholar

[13] P. Cheng, M.P. Zheng, Y.P. Jin and Q. Huang: Mater. Lett. Vol. 57 (2003), p.2989

Google Scholar

[14] M. Yoshinaka, K. Hirota and O. Yamaguchi: J. Am. Ceram. Soc. Vol. 80 (1997), p.2749

Google Scholar

[15] J. Yang, Y.X. Huang and J. Ferreira: J. Mater. Sci. Vol. 16 (1997), p.(1933)

Google Scholar

[16] L. Zhao, J.G. Yu and B. Cheng: J. Solid. State. Chem. Vol. 178 (2005), p.1818

Google Scholar

[17] P. Viravathana and D.W.M. Marr: J. Colloid. Interf. Sci. Vol. 221(2000), p.301

Google Scholar

[18] A.K. Van Helden, J.W. Jansen and A. Vrij: J. Colloid. Interf. Sci. Vol. 81(1981), p.354

Google Scholar

[19] A.K. Van Helden and A. Vrij: J. Colloid. Interf. Sci. Vol. 78 (1980), p.312

Google Scholar

[20] M.A. Uguina, D.P. Serrano, G. Ovejero, R.V. Grieken and M. Camacho: Appl. Catal. Gen. Vol. 124 (1995), p.391

Google Scholar

[21] A.A. Ismail, I.A. Ibrahim, M.S. Ahmed, R.M. Mohamed and H. El-Shall: J. Photochem. Photobiol. A: Chem. Vol. 163 (2004), p.445

Google Scholar