Effect of BPR on the Preparation of Nb-Base Powder via Ball Milling

Article Preview

Abstract:

The effect of ball-to-powder weight ratio on the fabrication of Nb-base powder via ball milling was studied. The structural evolution and morphology of the powders were investigated using LPSA, XRD and SEM techniques. The results indicate that increasing the BPR leads to decreases in particle size and grain size of powders. For a given milling time of 18 h and rotational speed of 250 rpm, ball milling with BPR of 20:1 produces an ultrafine powder with a mean particle size of about 2 μm and a grain size of about 20 nm. A 30:1 of BPR increases the useless collision frequency during ball milling, leads to a serious fraying of milling balls.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

2554-2558

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.Y. Kim, H. Tanaka, M.S. Kim and S. Hanada: Mater. Sci. Eng., A Vol. 346 (2003), p.65

Google Scholar

[2] G. Aggarwal, I. Smid, S.J. Park and R.M. German: Int. J. Refract. Met. Hard Mater. Vol. 25 (2006), p.226

Google Scholar

[3] Y. Tan, C.L. Ma, A. Kasama, R. Tanaka and J.M. Yang: Mater. Sci. Eng., A Vol. 355 (2003), p.260

Google Scholar

[4] Y. Tan, H. Tanaka, C.L. Ma, A. Kasama, R. Tanaka, Y. Mishima and S. Hanada: J. Jpn Inst. Metals, Vol. 64 (2000), p.559

Google Scholar

[5] G. Aggarwal, S.J. Park and I. Smid: Int. J. Refract. Met. Hard Mater. Vol. 24 (2006), p.253

Google Scholar

[6] H.R.Z Sandim and A.F. Padilha: Key Eng. Mater. Vol. 189-191 (2001), p.296

Google Scholar

[7] A. Mostaed, E. Mostaed, A. Shokuhfar, H. Saghafian and H.R. Rezaie: Defect. Diffus. Forum Vol. 283-286 (2009), p.494

DOI: 10.4028/www.scientific.net/ddf.283-286.494

Google Scholar

[8] E. Hellstern, H.J. Fecht, Z. Fu and W.L. Johnson: J. Appl. Phys Vol. 65 (1989), p.305

Google Scholar

[9] C.C. Koch: Nanostruct. Mater Vol. 2 (1993), p.109

Google Scholar

[10] L. Chen and Y.M. Dong: Mater. Sci. Eng A Vol. 528 (2011), p.8374

Google Scholar

[11] H. Ramezanalizadeh and S. Heshmati-Manesh: Int. J. Refract. Met. Hard Mater. Vol. 31(2012), p.210

Google Scholar

[12] L. Shaw, M. Zawrah, J. Villegas, H. Luo and D. Miracle: Metall. Mater. Trans. A Vol. 34 (2003), p.159

Google Scholar

[13] K. Maweja, M. Phasha, N. van der Berg: Powder Technol. Vol. 199 (2010), p.256

Google Scholar

[14] M. Rezaee, S.M.M Khoie, D. H. Fatmehsari and H.K. Liu: J. Alloys Compd. Vol. 509 (2011), p.8912

Google Scholar

[15] D.Z. Zhang, M.L. Qin, Rafi-ud-din, L. Zhang and X.H. Qu: Int. J. Refract. Met. Hard Mater. Vol. 32 (2012), p.45

Google Scholar

[16] G.K. Williamson, W.H. Hall: Acta Metall. Vol. 1 (1953), p.22

Google Scholar