Preparation and Electrochemical Properties of Amorphous Tin-Copper Composite Oxide CuSnO3

Article Preview

Abstract:

Composite oxides materials CuSnO3 as anode materials for lithium-ion batteries were synthesized by chemical coprecipitation method using SnCl4•5H2O, NH3•H2O and Cu(NO3)2•3H2O as raw materials.The precursor CuSn(OH)6 and CuSnO3 powders were characterized by thermogravimertric(TG) analysis and differential thermal analysis(DTA), X-ray diffraction(XRD), and transmission electron microscope (TEM). The electrochemical properties of CuSnO3 powders as anode materials of lithium ion batteries were investigated comparatively by galvanostatic charge-discharge experiments. The results show the average particle size of amorphous CuSnO3 is 70nm. The initial capacity during the first lithium insertion is 1078 mA•h/g and the reversible charge capacity in first cycle is 775 mA•h/g. After 20 cycles, the charge capacity is 640 mA•h/g and this material shows moderate capacity fading with cycling. As a novel anode material for lithium ion batteries, amorphous CuSnO3 demonstrates a large capacity and a low insertion potential with respect to Li metal.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

31-35

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] I. Yoshio, K. Tadahiko. Science Vol. 27(1997), p. l395.

Google Scholar

[2] I. A. Courtney, J. R. Dahn. J Electrochem Soc Vol. 144(1997), p.2045.

Google Scholar

[3] W. F. Liu, X. J. Huang, Z. X. Wang, H. Li and L. Q. Chen. J Electrochem Soc, 1998, 145(1), p.59.

Google Scholar

[4] I. A. Courtney, J. R. Dahn. J Electrochem Soc Vol. 144(1997), p.2943.

Google Scholar

[5] Z. Q. He, X. H.Li, X. M. Wu, Z. H. Hou, E. H. Liu, L. F Deng., C. Y. Hu and H. P.Tian. Trans Nonferrous Met Soc China Vol. 13(2003), p.998.

Google Scholar

[6] Z. Q. He, X. H.Li, L. Z Xiong, E. H. Liu and Z. H. Hou. Chinese Journal of Inorganic Chemistry Vol. 20(2004), p.102.(in Chinese)

Google Scholar

[7] Z. Q. He, X. H.Li, L. Z Xiong, X. M. Wu, Z. B. Xiao and M. Y. Ma. Materials Research Bulletin Vol. 40(2005), p.861.

Google Scholar

[8] A. Anani, B. S. Crouch and R. A. HUGGINS. J Electrochem Soc Vol. 134(1987), p.3098.

Google Scholar

[9] R. Retoux, T. Brousse and D. M. Schleich. J Electrochem Soc Vol. 146(1999), p.2472.

Google Scholar

[10] T. Brousse, R. Retoux, U. Herterich and D. M. Schleich. J Electrochem Soc Vol. 145(1998), p.1.

Google Scholar

[11] W. L.Hong, D. L. Hao, J. H. Liu, F. Q. Zhao, D. Y. TiaoIAO and F. Wang. Chinese Journal of Applied Chemistry Vol. 21(2004), p.775.(in Chinese)

Google Scholar

[12] P. He, H. Liu, Z. Li, Y. Liu, X. Xu and J. Li. Langmuir Vol. 20 (2004), p.10260.

Google Scholar

[13] Z. Y. Yuan, F. Huang, J. T.Sun and Y.H. Zhou. Chemistry Letters, Vol. 31(2002), p.408.

Google Scholar

[14] A. I. Lebedev. Physics of the Solid State , Vol. 51(2009), p.1766.

Google Scholar