Rapid In Situ Reactive Sintering and Properties of ZrO2-ZrW2O8 Composites

Article Preview

Abstract:

ZrO2-ZrW2O8 diphasic composites with controllable coefficients of thermal expansion (CTEs) are synthesized by rapid in-situ reactive sintering with ZrO2 and WO3 as reactants. High density of ZrO2-ZrW2O8 composites without decomposition of ZrW2O8 is obtained with Y2O3 sintering additive. The CTEs of specimen with ZrO2 to ZrW2O8 mass ratio 1:1.0, 1:1.3, 1:1.5 and 1:2.0 are measured to be about 1.20×10−6, 0.31×10−6, -0.78×10−6 and -1.13×10−6 K−1, respectively. Raman mappings demonstrate homogenous dispersions of ZrO2 and ZrW2O8 in the ZrO2-ZrW2O8 composites. In addition to the role as sintering additive, some Y3+ cations enter the lattice to substitute Zr4+ in ZrW2O8, leading to an increase in disorder and a decrease in phase transition temperature of ZrW2O8 in the composites.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

42-46

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.A. Mary, J.S.O. Evans, T. Vogt and A.W. Sleight: Science Vol. 272 (1996), p.90

Google Scholar

[2] T.R. Ravindran, A.K. Arora and T.A. Mary: J. Phys.: Condens. Matter. Vol. 13 (2001), p.11573

Google Scholar

[3] E.J. Liang, S.H. Wang, T.A. Wu, M.J. Chao, B. Yuan and W.F. Zhang: J. Raman Spectrosc. Vol. 38 (2007), p.1186

Google Scholar

[4] E.J. Liang, Y. Liang, Y. Zhao, J. Liu and Y.J. Jiang: J. Phys. Chem. A Vol. 112(49) (2008), p.12582

Google Scholar

[5] J.S.O. Evans, T.A. Mary, T. Vogt, M.A. Subramanian and A.W. Sleight: Chem. Mater. Vol. 8 (1996), p.2809

Google Scholar

[6] E.J. Liang: Rec. Pat. Mater. Sci., Vol. 3 (2010), p.106

Google Scholar

[7] P. Lommens, C.D. Meyer, E. Bruneel, K.D. Buysser, I. Van Driessche and S. Hoste: J. Eur. Ceram. Soc. Vol. 25 (2005), p.3605

DOI: 10.1016/j.jeurceramsoc.2004.09.015

Google Scholar

[8] X.B. Yang, X.N. Cheng, X.H. Yan, J. Yang, T.B. Fu and J. Qiu: Compos. Sci. Technol. Vol. 67 (2007), p.1167

Google Scholar

[9] L. Sun, A. Sneller and P. Kwon: Compos. Sci. Technol. Vol. 68 (2008), p.3425

Google Scholar

[10] K.D. Buysser, P. Lommens, C.D. Meyer, E. Bruneel, S. Hoste and I. Van Driessche: Ceram. Silik. Vol. 4 (2004), p.139

Google Scholar

[11] D.K. Balch and D.C. Dunand: Metall. Mater. Trans. A Vol. 35A (2004), p.1160

Google Scholar

[12] P.E. Quintard, P. Barbéris, A.P. Mirgorodsky and T. Merle-Méjean: J. Am. Ceram. Soc. Vol. 85(7) (2002), p.1745

Google Scholar

[13] Y. Yamamura, M. Kato and T. Tsuji: Thermochim. Acta Vol. 431 (2005), p.24

Google Scholar