Investigation on the Large-Scale Synthesis of PbSe Nanocrystals

Article Preview

Abstract:

Large-scale synthesis of high quality PbSe nanocrystals was conducted with the one-pot method. By this “greener” synthesis route, the use of traditional dangerous pyrophoric trioctylphosphine (TOP) and tributylphosphine (TBP) reagents was avoided. The crystal size and shape were controlled by the reaction time, reaction temperature, and the use of different combinations of surfactants. X-ray diffraction (XRD) and transition electron microscopy (TEM) were used to characterize as-synthesized nanocrystals and demonstrated the rock salt cubic structures and narrow size distributions. More than 3 g of high quality PbSe nanocrystals were synthesized in one reaction by this large-scale one-pot method. The uniform size of as-synthesized nanocrystals promoted the self-assembly of PbSe nanocrystals into large-area ordered superstructures.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

310-313

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.E. Brus: Journal of Chemical Physics, Vol. 80 (1984), p.7

Google Scholar

[2] F.W. Wise: Accounts Chem Res Vol. 33 (2000), p.773

Google Scholar

[3] R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev and A.L. Efros: Nano Letters Vol. 5 (2005), p.865

DOI: 10.1021/nl0502672

Google Scholar

[4] M. Fardy, A.I. Hochbaum, J. Goldberger, M.M. Zhang and P. Yang: Adv. Mater Vol. 19 (2007), p.3047

Google Scholar

[5] M. Harrison, S. Kershaw, M. Burt, A. Rogach, A. Kornowski, A. Eychmuller and H. Weller: Pure Appl Chem Vol. 72 (2000), p.295

Google Scholar

[6] D.V. Talapin and C.B. Murray: Science Vol. 310 (2005), p.86

Google Scholar

[7] C. Murray, S. Sun, W. Gaschler, H. Doyle, T. Betley and C. Kagan: Ibm J Res Dev Vol. 45 (2001), p.47

DOI: 10.1147/rd.451.0047

Google Scholar

[8] H. Shen, H. Wang, Z. Tang, J.Z. Niu, S. Lou, Z. Du and L.S. Li: Crystengcomm Vol. 11 (2009), p.1733

Google Scholar

[9] J.Z. Niu, H. Shen, H. Wang, W. Xu, S. Lou, Z. Du and L.S. Li: New J. Chem. Vol. 33 (2009), p.2114

Google Scholar

[10] H. Shen, H. Wang, X. Li, J.Z. Niu, X. Chen and L.S. Li: Dalton Trans. (2009), p.10534

Google Scholar

[11] J.Z. Niu, H. Shen, C. Zhou, W. Xu, X. Li, H. Wang, S. Lou, Z. Du and L.S. Li: Dalton Trans. Vol. 39 (2010), p.3308

Google Scholar

[12] T. Mokari, M. Zhang and P. Yang: Journal of the American Chemical Society Vol. 129 (2007), p.9864

Google Scholar

[13] H. Shen, H. Wang, H. Yuan, L. Ma and L.S. Li: Crystengcomm (2011).

Google Scholar

[14] X. Li, J.Z. Niu, H. Shen, W. Xu, H. Wang, L.S. Li: Crystengcomm Vol. 12 (2010), p.4410

Google Scholar

[15] V.K. LaMer and R.H. Dinegar: Journal of the American Chemical Society Vol. 72 (1950), p.4847

Google Scholar