Rapid Solvent-Free Melting Synthesis of Tungsten Nitrides with Lamellar, Solid Spherical Nanostructures at a Low Temperature

Article Preview

Abstract:

A rapid solvent-free melting route has been successfully developed for the synthesis of tungsten nitrides with lamellar and solid spherical nanostructures which have considerably different surface areas (106.4 m2 g-1 contrast to 8.3 m2 g-1) by the reaction of WCl6 and NaNH2 at 220 °C for 2-5 h directly, and it is found that the heat insulating property of reaction container plays important roles in the composition, phase, and morphologies of the nitrides. The products were analyzed by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and X-ray photoelectron spectroscopy (XPS). Their thermal stability and surface area were measured by thermogravimetric analysis (TGA) and BET, respectively. Finally, the possible formation mechanism of tungsten nitrides with different morphologies was also investigated.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

314-318

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S.T. Oyama: The Chemistry of Transition Metal Carbides and Nitrides (Blackie Academic Professional, Glasgow 1996).

Google Scholar

[2] M. Nagai, N. Hirano, S. Omi: Jpn. J. Appl. Phys. Vol.39 (2000), P. 4558.

Google Scholar

[3] K.K. Lai, A.W. Mak, T.P.H.F. Wendling, P. Jian, B. Hathcock: Thin Solid Films Vol. 332 (1998), P. 329.

Google Scholar

[4] M.H. Tsai, S.C. Sun, H.T. Chiu, S.H. Chuang: Appl. Phys. Lett. Vol. 68 (1996), P. 1412.

Google Scholar

[5] A. Rugge, J.S. Becker, R.G. Gordon, S.H. Tolbert: Nano Lett. Vol.3 (2003), P. 1293.

Google Scholar

[6] G. Soto,; W. de la Cruz, F.F. Castillon, J.A. Diaz, R. Machorro, M.H. Farias: Appl. Surf. Sci. Vol.214 (2003), P. 58.

Google Scholar

[7] Y.G. Shen, Y.W. Mai, D.R. McKenzie, Q.C. Zhang, W.D. McFall, W.E. McBride: J. Appl. Phys. Vol.88 (2000), P. 1380.

Google Scholar

[8] (a) JCPDS Cards No. 25-1257 for b-W2N. (b) JCPDS Cards No. 25-1256 for δ-WN.

Google Scholar

[9] C. Meunier, C. Monteil, C. Savall, F. Palmino, J. Weber, R. Berjoan, J. Durand: Appl. Surf. Sci. Vol.125 (1998), P. 313.

DOI: 10.1016/s0169-4332(97)00383-8

Google Scholar

[10] M. Nagai, T. Suda, K. Oshikawa, N. Hirano, S. Omi: Catal. Today Vol.50 (1999), P. 29.

Google Scholar

[11] J.A. Melo-Banda, J.M. Dominguez, G. Sandoval-Robles: Catal. Today Vol.65 (2001), P. 279.

Google Scholar

[12] J.H. Kim, K.L. Kim: Appl. Catal. A: General Vol.181 (1999), P. 103.

Google Scholar

[13] L. Volpe, M. Boudart: J. Solid State Chem. Vol.59 (1985), P. 332.

Google Scholar

[14] I.P. Parkin, A.T. Rowley: J. Mater. Chem. Vol.5 (1995), P. 909.

Google Scholar

[15] R.F. Jarvis, R.M. Jacubinas, R.B. Kaner: Inorg. Chem. Vol.39 (2000), P. 3243.

Google Scholar