DNA/AuNP Fluorescent Detecting Nano-Device

Article Preview

Abstract:

A DNA/AuNP (gold nanoparticle) detecting nano-device has been constructed using DNA displacement (three-way branch migration).Here, DNA/AuNP conjugations and DNA circle are utilized as basic parts in nano-system, while sensitive fluorescent signals are applied as output results. Because of the accurate molecular recognition and effective strand displacements, this detecting system is able to yield correct results after receiving specific input DNA signals. In this work, the results are detected at three levels: PAGE gel bands, fluorescent signals and TEM images. Especially, in TEM images, positions of AuNPs are detected as an alternative approach to obtain output results. Combing these multiple detecting methods together, advantages of this DNA/AuNP system could be taken used entirely. It is believed that DNA/AuNPs conjugations nano-device will be applied widely in molecular detecting fields.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

455-458

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.X. Mu, W.S. Shi, G.W. She, J.C. Chang and S.T. Lee: Angew. Chem. Int. Ed.Vol.48 (2009), pp.1-5.

Google Scholar

[2] K. Szaciowski, W. Macyk and G. Stochel: J. Am. Chem. Soc. Vol. 128 (2006), pp.4550-4551.

Google Scholar

[3] B. Yurke, A.J. Turberfield, A.P.M. Jr, F.C. Simmel and J.L. Neumann: Nature, Vol. 406 (2000)pp.605-608.

Google Scholar

[4] B. Jonathan and J.T. Andrew: Nature nanotechnology, Vol. 2 (2009), pp.275-284.

Google Scholar

[5] T. Omabegho, R. Sha and N.C. Seeman: Science, Vol. 324 (2009), pp.67-71.

Google Scholar

[6] E. S. Andersen, M. Dong, M.M. Nielsen, K. Jahn, R. Subramani, W. Mamdouh, M.M. Golas, B. Sander, H. Stark and L.P. Cristiano: Nature, Vol. 459 (2009), pp.73-77.

Google Scholar

[7] G. Seelig, D. Soloveichik, D.Y. Zhang and E. Winfree: Science Vol. 314 (2006), pp.1585-1588.

Google Scholar

[8] G. Seelig, B. Yurke and E. Winfree: J. Am. Chem. Soc., Vol. 128 (2006), pp.12211-12220.

DOI: 10.1021/ja0635635

Google Scholar

[9] J.S. Shin and N.A. Pierce: Nano Lett., Vol. 4 (2004), pp.905-909.

Google Scholar

[10] B.M. Frezza, S.L. Cockroft and M.R. Ghadiri: J. Am. Chem. Soc., Vol. 129 (2007),pp.14875-14879.

Google Scholar

[11] H. Yan: Science, Vol. 306 (2004), pp.2048-2049.

Google Scholar

[12] B. Chakraborty, R. Sha and N.C. Seeman: Proc.Natl. Acad. Sci., Vol. 105 (2008), pp.17245-17249.

DOI: 10.1073/pnas.0707681105

Google Scholar

[13] H. Gu, J. Chao, S. Xiao and N.C. Seeman: Nature nanotechnology, Vol. 4 (2009), pp.245-248.

Google Scholar

[14] R.P. Goodman, I.A.T. Schaap, C.F. Tardin, C.M. Erben, R.M. Berry, C.F. Schmidt and A.J. Turberfield: Science, Vol. 310 (2005), pp.1661-1665.

DOI: 10.1126/science.1120367

Google Scholar

[15] R.P. Goodman, M. Heilemann, S. Doose, C.M. Erben, A.N. Kapanidis and A.J. Turberfield: Nature nanotechnology, Vol. 3 (2008), pp.93-96.

DOI: 10.1038/nnano.2008.3

Google Scholar

[16] J.J. Storhoff, A.D. Lucas, V. Garimella, Y.P. Bao andU.R. Muller: Nature Biotechnol. Vol. 22 (2004), pp.883-887.

Google Scholar

[17] P. Hazarika, B. Ceyhan and C.M. Niemeyer: Small, Vol. 1 (2005), pp.844-848.

Google Scholar

[18] J. Liu and Y. Lu, Y: Analytical Chemistry, Vol. 76 (2004), pp.1627-1632.

Google Scholar