Photoluminescence Properties of β-SiC Nanoparticles by Electric-Pulses Discharge in Liquid-Phase Compound

Article Preview

Abstract:

β-SiC nanoparticles have been synthesized by electric pulses discharge (EPD) in Hexamethyl disilane. Dependence of photoluminescence (PL) from the samples with air-annealing are presented. Emission bands around 400 nm and 470 nm are observed at room temperature. The corresponding PL properties and possible mechanisms are discussed. The 400 nm peak may be result from the atom excess defect center at the surfaces of β-SiC nanocrystallites, while the 470 nm peak is believed to be related to the defects created in the interface boundary between β-SiC nanocrystallites and amorphous SiO2.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

477-480

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119

Google Scholar

[1] R. B. Campbell, and H. C. Chang, Solid-State Electron Vol.63 (1967), p.949

Google Scholar

[2] P. Glasgow, G. Ziegler, W. Zuttrop, G. Pensl, and R. Helbig, Proc. SPIE. Vol.868 (1987), p.40

Google Scholar

[3] D. M. Brown, E. T. Downey, M. Ghezzo, J. W. Kretchner, R. J. Saia, Y. S. Liu, J. A. Edmond, G. Gati, J. M. Pimbley, and W. E. Schneider, IEEE Trans. Electron Devicces. Vol.40 (1993), p.325

DOI: 10.1109/16.182509

Google Scholar

[4] J. A. Edmond, H. S. Kong, and C. H. Carter, Jr., Physica B Vol.185 (1993), p.453

Google Scholar

[5] J. W. Palmour, J. A.Edmond, H. S. Kong, and C. H. Carter, Jr., Physica B Vol.185 (1993), p.461

Google Scholar

[6] W. J. Choyke and L. Patrick, Phys. Rev. B Vol.2 (1970), p.4959

Google Scholar

[7] L. S. Liao, X. M. Bao, Z. F. Yang, and N. B. Min, Appl. Phys. Lett. Vol.66 (1995), p.2382

Google Scholar

[8] H. W. Shim, K. C. Kim, Y. H. Seo, K. S. Nahm, E. K. Suh, and H. J. Lee, Appl. Phys. Lett. Vol.70 (1997), p.1757

Google Scholar

[9] W. Q. Han, S. S. Fan, Q. Q. Li, W. J. Liang, B. L. Gu, D. P. Yu, Chem. Phys. Lett. Vol.265 (1997), p.374

Google Scholar

[10] X. L. Wu, G. G. Siu, M. J. Stokes, D. L. Fan, Y. Gu, and X. M. Bao, Appl. Phys. Lett. Vol.77 (2000), p.1292

Google Scholar

[11] C. H. Liang, G. W. Meng, L. D. Zhang, Y. C. Wu, Z. Cui, Chem. Phys. Lett. Vol.329 (2000), p.323

Google Scholar

[12] Y. P. Guo, J. C. Zheng, A. T. S. Wee, C. H. A. Huan, K. Li, J. S. Pan, Z. C. Feng, S. J. Chua, Chem. Phys. Lett. Vol.339 (2001), p.319

Google Scholar

[13] G. Z. Shen, D. Chen, K. B. Tang, Y. T. Qian, S. Y. Zhang, Chem. Phys. Lett. Vol.375 (2003), p.177

Google Scholar

[14] X. M. Liu, and K. F. Yao, Nanotechnology Vol.16 (2005), p.2932

Google Scholar

[15] Kai Du, Haibin Yang, Ronghui Wei, et al., Materials Research Bulletin, Vol. 43 (2008), p.120

Google Scholar

[16] X. L. Wu, F. Yan, X. M. Bao, N. S. Li, L. S. Liao, Appl. Phys. Lett. Vol.68 (1996), p. (2091)

Google Scholar

[17] R. Reitano, G. Foti, C. F. Pirri, F. Giorgis, P. Mandracci, Mat. Sci. Eng. C Vol.15 (2001), p.299

Google Scholar

[18] C. Tan, X. L. Wu, S. S. Deng, G. S. Huang, X. N. Liu, X. M. Bao, Phys. Lett. A Vol.310 (2003), p.236

Google Scholar