Study on the Mechanical Property and Microstructure of Surgical Implanted Ti-6Al-7Nb Titanium Alloy

Article Preview

Abstract:

Ti-6Al-7Nb titanium alloy is attractive to medical device industry for orthopedic applications, such as total hip replacement systems, fracture fixation plates, intermedullary rods and nails, spinal devices, screws, and wires. Substituting Niobium for Vanadium as the beta stabilizing element, Ti-6Al-7Nb titanium alloy shows higher biocompatability than Ti-6Al-4V titanium alloy. The present research is designed to investigate the influence of annealling temper on the mechanical properties and microstructures of Ti-6Al-7Nb titanium alloy, by optical microscopic (OM) and scanning electron microscopic (SEM), and tensile test. The results show that the microstructures after recrystalization heat treatment comprise a mount of equiaxed α grains in the matrix of equiaxed β phase with α (hcp)/ β (bcc) platelets. The microstructures with partial recrystalization α phase possess better mechanical properties which conform to the ASTM F 1295 standard and ISO 5832-11 standard. Compared with Ti-6Al-4V titanium alloy and CP titanium alloy, Ti-6Al-7Nb titanium alloy is suitable to be used as implanted biomaterial devices to replace ill-functioning or missing tissues or organs.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 535-537)

Pages:

945-949

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. S. Wang, G. D. Xu, S. Y. Wei, W. Q. Li, X. H. Bai and Z. Q. Chen: Chinese Journal of Rare Meterials Vol. 25(2001), p.395. In Chinese.

Google Scholar

[2] H. J. Rack, J. I. Qazi: Materials Science and Engineering C Vol. 26(2006), p.1269

Google Scholar

[3] P. F. Barbosa and S. T. Button: Proc Instn Mech Engrs Vol. 214(2000), p.23

Google Scholar

[4] S. L. Assis and I. Costa: Materials and Corrosion Vol. 58(2007), p.329

Google Scholar

[5] ASM: Heat Treating of Titanium and Titanium Alloys, Metal Handbook, ed. B. Sanders, Ninth Edition, vol. 4(1981), p.763

Google Scholar

[6] Titanium, 2nd Edition, Engineering Materials and Processes ed. G. Lutjering and J. C. Williams, (Springer, Verlag Berlin Heidelberg 2003, 2007.)

Google Scholar

[7] Z. J. Niu, J. M. Cao, G. J. Yang and T. X. Wang: Titanium Industry Progress Vol. 23(2006), p.23. In Chinese.

Google Scholar

[8] Z. Jin: A Thesis in Material Science, Hot deformation behaviors and heat-treatment technology of biomedical Ti-6Al-7Nb alloy, Northeastern University, Shenyang China, 2008. In Chinese.

Google Scholar

[9] S. K. Li and W. J. Yie: Chinese Journal of Rare Metals Vol. 31(2007), p.709. In Chinese.

Google Scholar

[10] S. Mall and S.A. Namjoshi: Materials Science and Engineering A Vol.383(2004), p.334

Google Scholar

[11] H. L. Zhu, D.Y. Seo and J. H. Kim: Scripta Materialia Vol.52(2005), p.45

Google Scholar

[12] S. A. Ajeel, T. L. Alzubaydi and A. K. Swadi: Eng. & Technology Vol.25(2007), p.431

Google Scholar

[13] J. Lindemann and L. Wagner: Mater. Sci. and Eng. A Vol. 263(1999), p.137

Google Scholar

[14] Z. S.Yuan, S. Y. Chen, P. B. Han, M. Z. Jiang, J. Zhang and C. S. Liu: Journal of Materials Engineering Vol. 9(2005), p.37. In Chinese.

Google Scholar