Capture of Carbon Dioxide by Adsorption- A Review

Article Preview

Abstract:

Carbon dioxide is the largest contributor in regard of its emission amount contributing to 60 percent of global warming effects. Various methods are proposed and researched in CO2 separation and adsorption process is the most promising method. An overview of the adsorbents in the capture of CO2 by adsorption is presented in this paper and the focus is on the advances of mesoporous silicas functionalized by amino modification, coating and impregnation in CO2 capture. Future promising research directions in the CO2 adsorption by the mesoporous silicas are suggested.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 538-541)

Pages:

2240-2245

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Halmann M. M., Stenberg M: Greenhouse Gas Carbon Dioxide Mitigation, CRC Press LLC, Florida, 1999.

Google Scholar

[2] Service R. F: The carbon conundrum, Sci. Vol. 305 (2004), p.962.

Google Scholar

[3] Stewart C., Hessami M. A: Energ. Convers. Manage., Vol. 46 (2005), p.403.

Google Scholar

[4] Figueroa J. D., Fout T., Plasynski S., McIlvried H., Srivastava R. D: Int. J. Greenh. Gas Cont, Vol. 2 (2008), p.9.

Google Scholar

[5] Benson S. M., Surles T: Proc. IEEE. Vol 94 (2006), p.1795.

Google Scholar

[6] Lee S., Park J. W., Song H. J., Maken S., Filburn T: Energ. Policy. Vol. 36 (2008), p.326.

Google Scholar

[7] Meng K. C., Williams R. H., Celia M. A: Energ. Policy. Vol. 35 (2007), p.2368.

Google Scholar

[8] Idem R., Tontiwachwuthikul P: Ind. Eng. Chem. Res. Vol. 45(2006), p.2413.

Google Scholar

[9] Yang H. Q., Xu Z. H., Fan M. H., Gupta R., Slimane R. B., Bland A. E., Wright I: J. Environ. Sci.Vol. 20 (2008), p.14.

Google Scholar

[10] Zhou Q., Chan C. W., Tontiwachiwuthikul P: Ind. Eng. Chem. Res. Vol. 47 (2008), p.4937.

Google Scholar

[11] Li J. L., Chen B. H: Sep. Purif. Technol. Vol. 41 (2005), p.109.

Google Scholar

[12] Granite E. J., O B. T: Fuel Process. Technol. Vol. 86 (2005), p.1423.

Google Scholar

[13] Notz R., Asprion N., Clausen I., Hasse H: Chem. Eng. Res. Des. Vol. 85 (2007), p.510.

Google Scholar

[14] Ma S., Svendsen H. F., Hoff K. A: Energ. Convers. Manage. Vol. 48 (2007), p.251.

Google Scholar

[15] Aaron D., Tsouris C: Separ. Sci. Technol. Vol. 40 (2005), p.321.

Google Scholar

[16] Lee J. S., Lee J. P: Biotechnol. Bioprocess Eng. Vol. 8 (2003), p.354.

Google Scholar

[17] Kohl A. L., Richard N., Gas Purification, Gulf Professional Publishing, Houston, 1997.

Google Scholar

[18] Lee J. S., Kim J. H., Kim J. T., Suh J. K., Lee J. M., Lee C. H: J. Chem. Eng. Data. Vol. 47(2002), p.1237.

Google Scholar

[19] Dreisbach F., Staudt R., Keller J. U: Adsorption. Vol. 5 (1999), p.215.

Google Scholar

[20] Katoh M., Yoshikawa T., Tomonari T., Katayama K., Tomida T: J. Colloid Interf. Sci. Vol. 226 (2000), p.145.

Google Scholar

[21] Khelifa A., Benchehida L., Derriche Z: J. Colloid Interf. Sci. Vol. 278 (2004), p.9.

Google Scholar

[22] Siriwardane R. V., Shen M. S., Fisher E. P: Energy Fuels, Vol. 19 (2005), p.1153.

Google Scholar

[23] Li G., Xiao P., Webley P., Zhang J., Singh R: Adsorption. Vol. 14 (2008), p.415.

Google Scholar

[24] Wirawan S. K., Creaser D: Sep. Purif. Technol. Vol. 52 (2006), p.224.

Google Scholar

[25] Merel J., Clausse M., Meunier F: Ind. Eng. Chem. Res. Vol. 47 (2008), p.209.

Google Scholar

[26] Jadhav P. D., Chatti R. V., Biniwale R. B., Labhsetwar N. K., Devotta S., Rayalu S. S: Energy Fuels. Vol. 21 (2007), p.3555.

DOI: 10.1021/ef070038y

Google Scholar

[27] ]Hiyoshi N., Yogo K., Yashima T: Micropor. Mesopor. Mater. Vol. 84 (2005), p.357.

Google Scholar

[28] Ficicilar B., Dogu T: Catal. Today. Vol. 115 (2006), p.274.

Google Scholar

[29] Ding Y., Alpay E: Chem. Eng. Sci. Vol. 55 (2000), p.3461.

Google Scholar

[30] ]Ding Y., Alpay E: Process. Saf. Environ. Vol. 79 (2001), p.45.

Google Scholar

[31] Wang X. P., Yu J. J., Cheng J., Hao Z. P., Xu Z. P: Environ. Sci. Technol. Vol. 42 (2008), p.614.

Google Scholar

[32] Soares J. L., Moreira R. F., Jose H. J., Grande C. A: Separ. Sci. Technol. Vol. 39 (2004), p.1989.

Google Scholar

[33] Leal O., Bolivar C., Ovalles C., Garcia J. J., Espidel Y. Inorg: Chim. Acta, Vol. 240 (1995), p.183.

Google Scholar

[34] Harlick P. J. E., Sayari A: Ind. Eng. Chem. Res. Vol. 45 (2006), p.3248.

Google Scholar

[35] Harlick P. J. E., Sayari A: Ind. Eng. Chem. Res. Vol. 46 (2007), p.446.

Google Scholar

[36] Huang H. Y., Yang R. T., Chinn D., Munson C. L: Ind. Eng. Chem. Res. Vol. 42 (2003), p.2427.

Google Scholar

[37] Knowles G. P., Graham J. V., Delaney S. W., Chaffee A. L: Fuel Process. Technol. Vol. 86 (2005), p.1435.

Google Scholar

[38] Kim S., Ida J., Guliants V. V., Lin J. Y: J. Phys. Chem. B. 2005Vol. 109 (), p.6287.

Google Scholar

[39] Wang L. F., Ma L., Wang A. Q., Liu Q., Mang T: Chin. J. Catal. Vol. 28 (2007), p.805.

Google Scholar

[40] ]Zhao H. L., Hu J., Wang J. J., Zhou L. H., Liu H. L: Acta Phys-chim. Sin. Vol. 23 (2007), p.801.

Google Scholar

[41] ]Knowles G. P., Delaney S. W., Chaffee A. L: Nanopor. Mater. IV. Vol. 156 (2005), p.887.

Google Scholar

[42] Feng X., Fryxell G. E., Wang L., Kim A. Y., Liu J., Kemner K. M: Science. Vol. 276 (1997), p.923.

Google Scholar

[43] Zheng F., Tran D. N., Busche B. J., Fryxell G. E., Addleman R. S., Zemanian T. S., Aardahl C. L.: Ind. Eng. Chem. Res. Vol. 44 (2005), p.3099.

DOI: 10.1021/ie049488t

Google Scholar

[44] Hiyoshi N., Yogo K., Yashima T: Chem. Lett. Vol. 33 (2004), p.510.

Google Scholar

[45] Liu X. W., Zhou L., Fu X., Sun Y., Su W., Zhou Y. P: Chem. Eng. Sci. Vol. 62 (2007), p.1101.

Google Scholar

[46] Plaza M. G., Pevida C., Arenillas A., Rubiera F., Pis J. J: Fuel. Vol. 86 (2007), p.2204.

DOI: 10.1016/j.fuel.2007.06.001

Google Scholar

[47] Son W. J., Choi J. S., Ahn W. S: Micropor. Mesopor. Mater. Vol. 113 (2008), p.31.

Google Scholar

[48] Xu X. C., Song C. S., Miller B. G., Scaroni A. W: Fuel Process. Technol. Vol. 86 (2005), p.1457.

Google Scholar

[49] Yue M. B., Chun Y., Cao Y., Dong X., Zhu J. H: Adv. Funct. Mater. Vol. 16 (2006), 1717.

Google Scholar

[50] Yue M. B., Sun L. B., Cao Y., Wang Z. J., Wang Y., Yu Q., Zhu J. H: Micropor. Mesopor. Mater. Vol. 114 (2008), p.74.

Google Scholar

[51] Franchi R. S., Harlick P. J., Sayari A: Ind. Eng. Chem. Res. Vol. 44 (2005), p.8007.

Google Scholar

[52] Xu X. C., Song C. S., Andresen J. M., Miller B. G., Scaroni A. W: Energy Fuels, Vol. 16 (2002), p.1463.

Google Scholar

[53] Xu X. C., Song C. S., Andresen J. M., Miller B. G., Scaroni A. W: Micropor. Mesopor. Mater. Vol. 62 (2003), p.29.

Google Scholar

[54] Xu X. C., Song C. S., Miller B. G., Scaroni A. W: Ind. Eng. Chem. Res. Vol. 44 (2005), p.8113.

Google Scholar

[55] Fryxell G. E., Liu J., Adsorption on silica surfaces. In Papierer E., Marcel Dekker, New York, 2000.

Google Scholar