Aligned MWCNT-Reinforced Bulk Epoxy-Matrix Composites by Dielectrophoretic Force

Article Preview

Abstract:

Studies have proved that enhancing epoxy matrices by adding carbon nanotubes to form structural reinforcements has significantly improved mechanical properties at very low carbon nanotube loading. That mechanical properties of aligned composites are better than those of random ones has been demonstrated in past studies; however, alignment is not easy to achieve in carbon nanotube epoxy-matrix bulk composite by conventional techniques. In this study, epoxy-matrix bulk composites reinforced by aligned multi-walled carbon nanotubes (MWCNTs) are prepared using an RF electric field to elicit dipolar interactions among the nanotubes in a viscous matrix following immobilization by curing under continuous application of an anisotropic electric field and the fracture toughness is experimentally characterized later. The processes of actively aligned MWCNTs epoxy-matrix bulk composite were controlled as a function of CNT weight fraction, the frequency of dielectrophoretic field and processing time. Carbon nanotubes are not only aligned along the field but also migrate laterally to enhance thickness. Eventually, addition of nanotubes improved the mechanical properties of the MWCNT/epoxy bulk composites, and the increase in the flexural modulus and fracture toughness with the aligned nanotube composite is two times greater than the improvement for the randomly oriented composite.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 538-541)

Pages:

2224-2231

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Zou, Y. Feng, L. Wang, and X. Liu: Carbon Vol. 42 (2004), p.271

Google Scholar

[2] C. Park, J. Wilkinson, S. Banda, Z. Ounaies, K. E. Wise, G. Sauti, P. T. Lillejei, and J. S. Harrison: J. Polym. Sci., Part B Vol. 44 (2006), p.1751

Google Scholar

[3] K.T. Lau and D. Hui: Carbon Vol. 40 (2002), p.1605

Google Scholar

[4] F.H. Gojny and K. Schulte: Compos. Sci. Technol. Vol. 64 (2004), p.2303

Google Scholar

[5] F.H. Gojny, M.H.G. Wichmann, B. Fiedler, and K. Schulte: Compos. Sci. Technol. Vol. 65 (2005), p.2300

Google Scholar

[6] K.L. Lu, M. Lago, Y.K. Chen, M.L.H. Green, P.J.F. Harris, and S.C. Tsang: Carbon Vol. 34 (1996), p.814

Google Scholar

[7] Q.Q. Li, M. Zaiser, and V. Koutsos: Phys Status Solidia - Appl. Res. Vol. 201 (2004), p. R89

Google Scholar

[8] T. Ogasawara, Y. Ishida, T. Ishikawa, and R. Yokota: Compos Part A: Appl. Sci. Manuf. Vol. 35 (2004), p.67

Google Scholar

[9] N. C. Jonathan, K. Umar, J.B. Werner, and K.G. Yurii: Carbon Vol. 44 (2006), p.1624

Google Scholar

[10] X. Xu, M.M. Thwe, C. Shearwood, and K. Liao: Appl. Phys. Lett. Vol. 81 (2002), p.2833

Google Scholar

[11] D. Qian, E.C. Dickey, R. Andrews, and T. Rantell: Appl. Phys. Lett. Vol. 76 (2000), p.2868

Google Scholar

[12] C. Park C: Chemical Physical Letters Vol. 364 (2002), p.303

Google Scholar

[13] H.T. Ham, Y.S. Choi, and J.I. Chung: J. Colloid and Interface Sci. Vol. 286 (2005), p.216

Google Scholar

[14] J.P. Salvetat, A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, and L. Forro: Phys. Rev. Lett. Vol. 82 (1999), p.944

DOI: 10.1103/physrevlett.82.944

Google Scholar

[15] E.S. Choi, J.S. Brooks, D.L. Eaton, M.S. Haik, M.Y. Hussaini, H. Garmestani, D. Li, and K.J. Dahmen: Appl. Phys. Vol. 94 (2003), p.6034

Google Scholar

[16] J. Sandler, M.S.P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A.H. Windle.: Polymer Vol. 40 (1999), p.5967

DOI: 10.1016/s0032-3861(99)00166-4

Google Scholar

[17] X.L. Xie, Y.W. Mai, and X.P. Zhou.: Mater. Sci. Eng. R Vol. 49 (2005), p.89

Google Scholar

[18] L. Jin, C. Bower, and O. Zhou: Appl. Phys. Lett. Vol. 73 (1998), p.1197

Google Scholar

[19] E.S. Choi, J.S. Brooks, D.L. Eato, M.S. Al-Haik, M.Y. Hussaini, H. Garmestani, D. Li, and K.J. Dahmen: Appl. Phys. Vol. 94 (2003), p.5451

Google Scholar

[20] S. Kumar, T. D. Dang, F. E. Arnold, A. R. Bhattacharyya, B. G. Min, X. Zhang, R. A. Vaia, C. Park, W. W. Adams, R. H. Hauge, R. E. Smalley, S. Ramesh, and P. A. Willis: Macromolecules Vol. 35 (2002), p.9039

DOI: 10.1021/ma0205055

Google Scholar

[21] K. Yamamoto, S. Akita, and Y. Nakayama: Jpn. J. Appl. Phys. Vol. 35 (1996), p. L917.

Google Scholar

[22] K. Yamamoto, S. Akita, and Y. Nakayama: J. Phys. D Vol. 31 (1998), p. L34.

Google Scholar

[23] X. Q. Chen, T. Saito, H. Yamada, and K. Matsushige: J. Appl. Phys. Lett. Vol. 78 (2001), p.3714.

Google Scholar

[24] L. A. Nagahara, I. Amlani, J. Lewenstein, and R. K. Tsui: Appl. Phys. Lett. Vol. 80 (2002), p.3826.

Google Scholar

[25] R. Krupke, F. Hennrich, H. V. Löhneysen, and M. M. Kappes: Science Vol. 301 (2003), p.344.

Google Scholar

[26] M. W. Wang, T. C. Hsu, and C. H. Weng: Eur. Phys. J. Appl. Phys. Vol. 42 (2008), p.69.

Google Scholar

[27] T. Prasse, J. Y. Cavaillé, and W. Bauhofer: Compos. Sci. Technol. Vol. 63 (2003), p.1835.

Google Scholar

[28] C. A. Martin, J. K. W. Sandler, A. H. Windle, M. K. Schwarz, W. Bauhofer, K. Schulte, and M.S.P. Shaffer: Polymer Vol. 46 (2005), p.877.

DOI: 10.1016/j.polymer.2004.11.081

Google Scholar

[29] M. W. Wang, Jpn. J. Appl. Phys. Vol. 48 (2009), p.35002

Google Scholar

[30] C. Park, J. Wilkinson, S. Banda, Z. Qunaies, K.E. Wise, and G. Sauti: J. Polym. Sci., IEEE Trans. Neural Networks, Vol. 44 (2006), p.1751

Google Scholar

[31] M. Abdalla, D. Dean, M. Theodore, J. Fielding, E. Nyairo, and G. Price: Polymer, Vol. 51 (2010), p.1614

DOI: 10.1016/j.polymer.2009.05.059

Google Scholar

[32] Y. F. Zhu, L. Shi, C. Zhan, X.Z. Yang, and J. Liang: Appl. Phys. A., Vol. 89 (2007), p.761

Google Scholar

[33] C. Ma, W. Zhang, Y. F. Zhu, L. J. Li, R. P. Zhang, and N Koratkar: Carbon, Vol. 46 (2008), p.706

Google Scholar

[34] H. A. Pohl: J. Appl. Phys. Vol. 22 (1951), p.869

Google Scholar

[35] H. Morgan and N. G. Green: AC Electrokinetics: Colloids and Nanoparticle., Research Studies Press, Hertfordshire, U.K. (2003)

Google Scholar

[36] T. B. Jones: Dielectromechanics, Cambridge University Press, Cambridge, U.K. (1995)

Google Scholar