Calculated Optimal Cuts for SAW Applications of LGS Crystal

Article Preview

Abstract:

Surface acoustic wave(SAW) propagation properties including propagation phase velocity, power flow angle(PFA), anisotropic factor, electromechanical coupling factor(k2) and temperature coefficient of frequency(TCF) are calculated in an optimal region defined by Euler angle (90o,0o~20o,0o~180o) for LGS crystal. It is concluded that the Euler angle (90o, 20o, 122.23o) and (90o, 17.5o, 121.9o) possess superior SAW performance, which have zero PFA, low TCF and moderate k2 simultaneously. We can give priority to these cut-types in the SAW applications at high temperature.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 538-541)

Pages:

2211-2214

Citation:

Online since:

June 2012

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Puccio, D. Malocha, in: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2007, pp.1873-1881.

Google Scholar

[2] A. Bungo, C. Jian, K. Yamaguchi, in: IEEE Ultrason.Symp, 1999, pp.231-234.

Google Scholar

[3] G. Douchet, F. Sthal, T. Leblois, E. Bigler, in: Ieee T Ultrason Ferr, 2010, pp.2531-2536.

DOI: 10.1109/tuffc.2010.1719

Google Scholar

[4] G. Tortissier, L. Blanc, A. Tetelin, J.L. Lachaud, M. Benoit, V. Conedera, C. Dejous, D. Rebiere, Sensor Actuat B-Chem, 156 (2011) 510-516.

Google Scholar

[5] E. Chilla, R. Kunze, M. Weihnacht, in: IEEE ULTRASONICS SYMPOSIUM, 2003, pp.92-95.

Google Scholar

[6] P. Nicolay, O. Elmazria, F. Sarry, in: 2008 IEEE International Ultrasonics Symposium Proceedings, 2008, pp.1877-1880.

Google Scholar

[7] X. Ji, T. Han, W. Shi, J.Mater.Sci.Technol, 20 (2004) 512-516.

Google Scholar

[8] A. Kaminskii, B. Mill, G. Khodzhabagyan, A. Konstantinova, A. Okorochkov, I. Silvestrova, physica status solidi (a), 80 (1983) 387-398.

DOI: 10.1002/pssa.2210800142

Google Scholar

[9] K. Shimamura, H. Takeda, T. Kohno, Journal of Crystal Growth, 163 (1996) 388-392.

Google Scholar

[10] J. Stade, L. Bohatý, M. Hengst, R. Heimann, Crystal Research and Technology, 37 (2002) 1113-1120.

Google Scholar

[11] G. Lu, C. Li, W. Wang, Z. Wang, Z. Wang, D. Yuan, H. Xia, physica status solidi (b), 241 (2004) 439-446.

Google Scholar

[12] A. Ilyaev, B. Umarov, L. Shabanova, M. Dubovik, physica status solidi (a), 98 (1986) K109-K114.

DOI: 10.1002/pssa.2210980243

Google Scholar

[13] S. Sakharov, P. Senushencov, A. Medvedev, Y. Pisarevsky, in: Frequency Control Symposium, IEEE, San Francisco, CA, USA, 1995, pp.647-652.

Google Scholar

[14] M. Kitaura, K. Mochizuki, Y. Inabe, M. Itoh, H. Nakagawa, S. Oishi, Phys Rev B, 69 (2004).

Google Scholar

[15] J.J. Campbell, W.R. Jones, in: IEEE TRANSACTION ON SONICS AND ULTRASONICS, 1968, pp.209-217.

Google Scholar

[16] K. Shibayama, K. Yamanouchi, H. Sato, T. Meguro, in: P Ieee, 1976, pp.595-597.

Google Scholar

[17] K. Yamanouchi, H. Odagawa, T. Kojima, T. Matsumura, Electronics Letters, 33 (1997) 193-194.

Google Scholar

[18] I.B. Yakovkin, R.M. Taziev, A.S. Kozlov, in: IEEE Ultrasonics Symposium, 1995, pp.389-392.

Google Scholar

[19] N. Naumenko, L. Solie, in: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2001, pp.530-537.

Google Scholar

[20] X. Ji, T. Han, W. Shi, in: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, pp.2075-2080.

Google Scholar