A Comparative Optimization of Electrical Properties and Surface Morphology of Ti/Al/Ta/Au Ohmic Contacts in AlGaN/GaN HEMTs on Si(111), Sapphire, 4H-SiC Substrates

Article Preview

Abstract:

In the process of characterizing AlGaN/GaN HEMTs on Si (111), Sapphire, 4H-SiC substrates, various Rapid Thermal Annealing (RTA) conditions for the Ti/Al/Ta/Au ohmic contact process and the resulting surface analysis have been investigated. In order to achieve a low ohmic contact resistance (RC) and a high quality surface morphology, we tested seven steps (800 °C to 920 °C) annealing temperatures and two steps (15, 30 sec) annealing times. According to these annealing temperatures and times, the optimal ohmic resistance of 3.62 × 10-6 Ohm • cm2 on Si(111) substrate, 9.44 × 10-6 Ohm • cm2 on Sapphire substrate and 1.24 × 10-6 Ohm • cm2 on 4H-SiC substrate are obtained at an annealing temperature of 850 °C and an annealing time of 30 sec, 800 °C and an annealing time of 30 sec and 900 °C and an annealing time of 30 sec, respectively. The surface morphologies of the ohmic contact metallization at different annealing temperatures are measured using an Atomic Force Microscope (AFM). AFM morphology Root Mean Square (RMS) level determines the relationship of the annealing temperature and the annealing time for all of the samples. According to these annealing temperatures and times, the optimal ohmic surface RMS roughness of 13.4 nm on Si(111) substrate, 3.8 nm on Sapphire substrate and 2.9 nm on 4H-SiC substrate are obtained at an annealing temperature of 850 °C and an annealing time of 30 sec, 800 °C and an annealing time of 30 sec and 900 °C and an annealing time of 30 sec, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 538-541)

Pages:

2207-2210

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Werquin, C. Gaquiere, Y. Guhel, N. Vellas, D. Theron, Electron Lett, 41(2005) pp.46-47

Google Scholar

[2] J. W. Johnson, E. L. Piner, A. Vescan, R. Therrien, P. Rajagopal IEEE Electron Device Lett 25(2004) pp.459-461

DOI: 10.1109/led.2004.831190

Google Scholar

[3] P. Waltereit, W. Bronner, R. Quay, M. Dammann, S. Muller, Phys Stat Sol (a) 205(2008) pp.1078-1080

Google Scholar

[4] N. Sarazin, E. Morvan, M. A. di Forte Poisson, M. Oualli, C. Gaquiere, IEEE Electron Device Lett 31(2010) pp.11-13

DOI: 10.1109/led.2009.2035145

Google Scholar

[5] Z. Fan, S. N. Mohammad, W. Kim, Ö. Aktas, A. E. Botchkarev and H. Morkoç, Appl Phys Lett, 68 (1996) p.1672

Google Scholar

[6] S. Ruvimov, et al Appl. Phys. Lett. 69 (1996) p.1556

Google Scholar

[7] A. V. Davydov, A. Motayed, W. J. Boettinger, R. S. Gates, Q. Z. Xue, H. C. Lee and Y. K. Yoo, phys stat sol, 7 (2005) p.2551

DOI: 10.1002/pssc.200461605

Google Scholar

[8] F. M. Mohammed, L. Wang, H. J. Koo and I. Adesida, Electron. Lett. 41 (2005) p.984

Google Scholar

[9] D. Qiao, et al, J Appl Phys, 89 (2001) p.5543

Google Scholar