The Change of D-Electron Occupancy in TiNi and Ni3Ti Compounds Measured from the White-Line Intensity of Electron Energy Loss Spectroscopy

Article Preview

Abstract:

The electron energy loss spectroscopy (EELS) of pure Ti, TiNi, Ni3Ti and pure Ni has been acquired and d-electron occupancy of both Ti and Ni in the metals has been measured from the white-line intensity. It is found that the change of d-electron occupancy of Ni is very small in all metals, but the d-electron occupancy of Ti in Ni3Ti increases considerable large relative to pure Ti. The change of d-electron occupancy is discussed in terms of charge transfer mechanism, local charge neutrality (LCN) approximation, and hybridization.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 538-541)

Pages:

2350-2353

Citation:

Online since:

June 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Otsuka and X. Ren: Progress in Materials Science vol. 50 (2005), p.511.

Google Scholar

[2] X.Y. Huang, J.A. Graeme, and M.R. Karin: Nature Materials Vol. 2 (2003), p.307.

Google Scholar

[3] J. Cui, Y.S. Chu, O.O. Famodu, Y. Furuya, Jae. H. Simpers, R.D. James, A. Ludwig, S. Thienhaus, M. Wuttig, Z.Y. Zhang, and I. Takeuchi: Nature Materials Vol. 5 (2006), p.286.

DOI: 10.1038/nmat1593

Google Scholar

[4] Z.Y. Zeng, C.E. Hu, L.C. Cai, X.R. Chen and F.Q. Jing: Physica B vol. 405 (2010), p.3665.

Google Scholar

[5] Z.G. Wang, X.T. Zu, X.D. Feng, S. Zhu, J.M. Zhou and L.M. Wang, Physica B vol. 353 (2004), p.9.

Google Scholar

[6] A. Sadoc, V.T. Huett, and K.F. Kelton: J. Phys.: Condens. Matter Vol.15 (2003), p.7469.

Google Scholar

[7] L. Brewer and P.R. Wengert: Metall. Trans. Vol. 4 (1973), p.83.

Google Scholar

[8] W.M. Lomor and W. Marshall: Philos. Mag. Vol. 3 (1958), p.185

Google Scholar

[9] V.F. Volkov and M.A. Blokhin: Fiz. Met. Metalloved (USSR) Vol. 26 (1968), p.376

Google Scholar

[10] J.C. Fuggle, F.U. Hillebrecht, R. Zeller, Z. Zolnierek, P.A. Bennett, and Ch. Freiburg: Phys. Rev. B Vol. 27 (1982), p.2145

Google Scholar

[11] V.P. Oleshko, M. Murayama and J.M. Howe: Microsc. Microanal. Vol. 8 (2002), p.350.

Google Scholar

[12] V.P. Oleshko and J.M. Howe: J. Appl. Phys. Vol. 101 (2007), p.54308.

Google Scholar

[13] F.E Magaña, M.T.O. Lara, F. Lovey, H.F. Zúñiga and D.R. Jara: Physica B vol. 405 (2010), p.57.

Google Scholar

[14] J. Richter, A. Braun, A.S. Harvey, P. Holtappels, T. Graule and L.J. Gauckler: Physica B vol. 403 (2008), p.87.

Google Scholar

[15] V. Stolojan, C.A. Walsh, J. Yuan and L.M. Brown: Inst. Phys. Conf. Ser. Vol. 161 (1999), p.235.

Google Scholar

[16] A. A. Guda, N. Smolentsev, J. Verbeeck, E. M. Kaidashev, Y. Zubavichus, A. N. Kravtsova, O. E. Polozhentsev and A. V. Soldatov: Solid State Commun. Vol. 151 (2011), p.1314.

DOI: 10.1016/j.ssc.2011.06.028

Google Scholar

[17] G. Stutz, V. M. Silkin, G. Tirao, A. Balassis, E. V. Chulkov, P. M. Echenique, E. Granado, A. F.G. Flores and P. G. Pagliuso: Solid State Commun. Vol. 149 (2009), p.1706.

DOI: 10.1016/j.ssc.2009.06.015

Google Scholar

[18] P.L. Potapov, S.E. Kulkova, D. Schryvers, and J. Verbeeck: Phys. ReV. B Vol. 64 (2001), p.184110

Google Scholar

[19] D.A. Muller, D.J. Singh, and J. Silcox: Phys. ReV. B Vol. 57 (1998), p.8181

Google Scholar

[20] D.H. Pearson, C.C. Ahn, and B. Fultz: Phys. ReV. B Vol. 47 (1993), p.8471

Google Scholar

[21] L.S. Hsu and A.I. Nesvizhskii: J. Phys. Chem. Solids Vol. 62 (2001), p.1103

Google Scholar

[22] H.H. Hsieh, Y.K. Chang, W.F. Pong, J.Y. Pieh, P.K. Tseng, T.K. Sham, I. Coulthard, S.J. Naftel, J.F. Lee, S.C. Chung, and K.L. Tsang: Phys. Rev. B Vol. 57 (1998), p.15204

DOI: 10.1103/physrevb.57.15204

Google Scholar

[23] T.K. Sham, A. Hiraya, and M. Watanabe: Phys. Rev. B Vol. 55 (1997), p.7585

Google Scholar

[24] Z.Q. Yang and D. Schryvers: Marter Sci Eng A Vol. 481-482 (2008), p.214

Google Scholar