A Theoretical Investigation of the Thermal Decomposition of Zinc Acetate and Zn-Oxo Complex Based on the Pyrolysis Characteristics of the Zinc-Containing Spent Catalyst

Article Preview

Abstract:

Zinc acetate and Zn-oxo complex of Zn4O(CH3COO)6 containing in the spent catalyst of vinyl synthesis were investigated by means of the first principles of density functional (DFT) methods. The geometries, energies, charge populations and local electron density distributions of the two compounds and their formate analogues were analyzed. Based on the pyrolysis characteristics of the spent catalyst, the thermodynamic properties of ΔG, ΔH and ΔS for possible decomposition reactions of zinc acetate and Zn4O(CH3COO)6 were calculated as functions of temperature. The results provide a theoretical evidence that Zn4O(CH3COO)6 is more stable than zinc acetate due to the regular Zn4O and ZnO4 tetrahedral coordination between Zn atoms and two kinds of O atoms. The preparation of Zn4O(CH3COO)6 via the hydrolysis of zinc acetate is thermodynamically feasible. Zn4O(CH3COO)6 is further decomposed into ZnO via a decarboxylation reaction rather than a hydrolysis reaction.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 538-541)

Pages:

2438-2443

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç: J. Appl. Phys., Vol. 98 (2005), p.041301

DOI: 10.1063/1.1992666

Google Scholar

[2] S. Banerjee, S. S. Wang: Nano.Lett. Vol. 2 (2002), p.195

Google Scholar

[3] X.Wei, H. Li, C.Yuan, and Q. Li: Microporous Mesoporous Mater., Vol. 118 (2009), p.307

Google Scholar

[4] N. K. Park, Y. J. Lee, G. B. Han, S. O. Ryu, T. J. Lee, C. H. Chang and G. Y. Han: Colloids Surf., A: Physicochemical and Engineering Aspects, Vol. 84 (2005), p.2165

Google Scholar

[5] K. Nomura, N. Shibata, and M. Maeda: J. Electrochem. Soc., Vol. 149 (2002), p.F76

Google Scholar

[6] J Chaichanawong, T Yamamoto, T Ohmori and A. Endo: Chem. Eng. J., Vol. 165 (2010), p.218

Google Scholar

[7] J. Mu C. Shao, Z. Guo, Z. Zhang, M. Zhang, P. Zhang, B. Chen and Y. Liu: ACS Appl. Mater. Interfaces, Vol. 3 (2011), p.590

Google Scholar

[8] Z. Zhang, Y. Fernández, J. A. Menéndez, J. Peng, Z. Zhang, L. Zhang and X. Duan: Journal of the Taiwan Institute of Chemical Engineers , Vol. 41(2010), p.617

Google Scholar

[9] W. Qu, Z. Zhang, J. Peng, Z. Zhang, L. Zhang and N. Li : World Journal of Enerineering, Vol. 5 (2008), p.858

Google Scholar

[10] Z. Zhang, J. Peng, Z. Zhang, L. Zhang, W. Qu, and N. Li : Journal of Central South University (Science and Technology) in Chinese, Vol. 40 (2009), p.317

Google Scholar

[11] F. Paraguay, W. Estrada and D. R. Acosta: Thin Solid Films, Vol. 350 (1999), p.192

Google Scholar

[12] A. K. Gyani, O. F. Z. Khan and P. O. Brien: Thin Solid Films, Vol. 182 (1989), p. L1

Google Scholar

[13] H. Koyama and Y. Satio : Bull. Chem. Sol. Jpn, Vol. 27 (1954), p.112

Google Scholar

[14] N. Rössler, K. Kotsis and V. Staemmler: Phys. Chem. Chem. Phys., Vol. 8 (2006), p.697

Google Scholar

[15] K. Kotsis and V. Staemmler: Phys. Chem. Chem. Phys., Vol. 8 (2006). p.1490

Google Scholar

[16] A. D. Becke: J. Chem. Phys., Vol. 98 (1993), p.5648

Google Scholar

[17] J. P. Perdew, K. Burke and M. Ernzerhof: Phys. Re. Lett. Vol. 77 (1996), p.3865

Google Scholar

[18] M. J. Frisch, et al. Gaussian 03, Revision B.01, Gaussian, Inc. Pittsburgh PA, (2003)

Google Scholar

[19] B. Delley: J. Chem. Phys., Vol. 92 (1990), p.508

Google Scholar