Heteroclinic Bifurcation Analysis of Duffing-Van Der Pol System by the Hyperbolic Lindstedt-Poincaré Method

Article Preview

Abstract:

The heteroclinic bifurcation of the Duffing-Van der Pol oscillatory System is studied by the hyperbolic Lindstedt-Poincaré method. The heteroclinic solution can be solved analytically by the method. And the critical value of the bifurcation parameter under which heteroclinic orbit forms can be determined by the perturbation procedure. Typical applications are studied in detail and compared with numerical results to illustrate the accuracy of the present method.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 538-541)

Pages:

2654-2657

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, USA 1983)

DOI: 10.1007/978-1-4612-1140-2

Google Scholar

[2] S. Wiggins: Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, USA 1990)

Google Scholar

[3] A.H. Nayfeh, B. Balachandran: Applied Nonlinear Dynamics, Analytical, Computational, and Experimental Methods (Wiley, USA 1995)

Google Scholar

[4] J.B. Li, H.H. Dai: On the study of singular nonlinear traveling wave equation: dynamical system approach (Science Press, China 2005)

Google Scholar

[5] A.F. Vakakis: J. Sound and Vibration Vol. 170 (1994), p.119

Google Scholar

[6] Z. Xu, H.S.Y. Chan, K.W. Chung: Nonlinear Dynamics Vol. 11 (1996), p.213

Google Scholar

[7] H.S.Y. Chan, K.W. Chung, Z. Xu: J. Sound and Vibration Vol. 206 (1997), p.589

Google Scholar

[8] Y.V. Mikhlin, G.V. Manucharyan: Chaos Solitons & Fractals Vol. 16 (2003), p.299

Google Scholar

[9] Q. Zhang, W. Wang, W. Li: Chinese Phys. Lett. Vol. 25 (2008) p. (1905)

Google Scholar

[10] M. Izydorek, J. Janczewska: J. Differential Equations Vol. 238 (2007), p.381

Google Scholar

[11] Y.Y. Cao, K.W. Chung, J. Xu: Nonlinear Dynamics Vol. 64 (2011), p.221

Google Scholar

[12] S.H. Chen, Y.Y. Chen, K.Y. Sze: J. Sound and Vibration Vol. 322 (2009), p.381

Google Scholar

[13] Y.Y. Chen, S.H. Chen: Nonlinear Dynamics Vol. 58 (2009), p.417

Google Scholar

[14] Y.Y. Chen, S.H. Chen, K.Y. Sze: Acta Mechanica Sinica Vol. 25 (2009), p.721

Google Scholar

[15] S. H. Chen, Y.Y. Chen, K.Y. Sze: SCIENCE CHINA: Tech. Scis. Vol. 53 (2010), p.692

Google Scholar