Effect of Sc Doping on Ferroelectric and Dielectric Properties of Bi0.9La0.1FeO3 Thin Film by Sol-Gel Process

Article Preview

Abstract:

Pure Bi0.9La0.1Fe1-xScxO3 (x = 0, 0.05, 0.10, 0.15, 0.20) (BLFSO) thin films were deposited on conductive indium tin oxide (ITO)/glass substrates through a simple sol-gel process. The effect of Sc doping on the XRD, microstructure, dielectric and ferroelectric properties of BLFO films was studied. Compared to counterparts of Bi0.9La0.1FeO3 (BLFO) film, the grain refinement of all films is obvious. When the value of Sc is 0.15, the double remanent polarization 2Pr is effectively enhanced with the extreme value of 17.7µC/cm2. The dielectric constant exhibits a trends of increase firstly and then decrease with the increase amount of scandium level.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 538-541)

Pages:

78-82

Citation:

Online since:

June 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Schmid: Ferroelectrics Vol. 162 (1994), p.317

Google Scholar

[2] N. A. Hill: Journal of Physical Chemistry B Vol. 104 (2000), p.6694

Google Scholar

[3] X. W. Qi, J. Zhou and Z. X. Yue: Adv. Funct. Mater Vol. 14 (2004), p.920

Google Scholar

[4] N. A. Hill and A Filippetti: Journal of magnetism and magnetic materials Vol. 242-245 (2002), p.976

Google Scholar

[5] S. Das, S. Basu and S. Mitra: Thin Solid Films Vol. 518 (2010), p.4071

Google Scholar

[6] H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardsbili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia, D. G. Schlom, M. Wuttig, A. Roytburd and R. Ramesh: Science Vol. 303(2004), p.661

DOI: 10.1126/science.1094207

Google Scholar

[7] K. F. Wang, J. M. Liu and Z. F. Ren: Adv. Phys. Vol. 58 (2009), p.321

Google Scholar

[8] B. B. Van Aken, T. T. M. Plastra, A. Filippetti and N. A. Spaldin: Nature Mater. Vol. 3 (2004), p.164

Google Scholar

[9] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Vieland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh: Science Vol. 299 (2003), p.1719

DOI: 10.1126/science.1080615

Google Scholar

[10] S. H. Jo, S. G. Lee and S. H. Lee: Mater. Res. Bull. Vol. 47 (2012), p.409

Google Scholar

[11] C. Michel, J. M. Moreau and G. D. Achenbach: Solid State Commun. Vol. 7 (1969), p.701

Google Scholar

[12] D. Lee, M. G. Kim, S. Ryu, H. M. Jang and S. G. Lee: Appl. Phys. Lett. Vol. 86 (2005). P. 222903

Google Scholar

[13] C. Ederer and N. A. Spaldin: Phys. Rev. B Vol. 71 (2005), p.060401

Google Scholar

[14] Z. Quan, W. Liu, H. Hu, S. Xu, B. Sebo, G. J. Fang, M. Y. Li and X. Z. Zhao: J. Appl. Phys. Vol. 104 (2008), p.084106

Google Scholar

[15] Q. Y. Xu, Z. Wen and J. L. Gao: Physica B Vol. 406 (2011), p. (2025)

Google Scholar

[16] D. H. Li, X. Q. Sun, X. H. Chuai, Z. F. Wu, Z. J. Cao, Y. F. Yan and D. M. Zhang: J. Cryst. Growth Vol. 338 (2012), p.85

Google Scholar

[17] S. R. Shannigrahi, A. Huang, D. Tripathy and A. O. Adeyeye: J. Magn. Magn.Mater. Vol. 320 (2008), p.2215

Google Scholar

[18] Y. Wu and G. Z. Cao: J. Mater. Sci. Lett. Vol. 19 (2000), p.267

Google Scholar

[19] M. Grossmann, O. Lohse, D. Bolten, U. Boettger, T. Schneller and R.Waser: J. Appl. Phys. Vol. 92 (2002), p.2680

Google Scholar

[20] C. J. Lu, X. L. Liu, X. Q. Chen, C. J. Nie, G. L. Rhun, S. Senz and D. Hesse: Appl. Phys. Lett. Vol. 88 (2006), p.162905

Google Scholar