[1]
P. Yu, J. Pineda de Gyvez, H. Corporaal, and H. Yajun, An Ultra-Low-Energy Multi-Standard JPEG Co-Processor in 65 nm CMOS With Sub/Near Threshold Supply Voltage, Solid-State Circuits, IEEE Journal of, vol. 45 (2010), pp.668-680.
DOI: 10.1109/jssc.2009.2039684
Google Scholar
[2]
H. Fuketa, D. Kuroda, M. Hashimoto, and T. Onoye, An Average-Performance-Oriented Subthreshold Processor Self-Timed by Memory Read Completion, Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 58 (2011), pp.299-303.
DOI: 10.1109/tcsii.2011.2149110
Google Scholar
[3]
M. Wei-Hsiang, J. C. Kao, V. S. Sathe, and M. C. Papaefthymiou, 187 MHz Subthreshold-Supply Charge-Recovery FIR, Solid-State Circuits, IEEE Journal of, vol. 45 (2010), pp.793-803.
DOI: 10.1109/jssc.2010.2042247
Google Scholar
[4]
Z. Bo, S. Pant, L. Nazhandali, S. Hanson, J. Olson, A. Reeves, M. Minuth, R. Helfand, T. Austin, D. Sylvester, and D. Blaauw, Energy-Efficient Subthreshold Processor Design, Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 17 (2009).
DOI: 10.1109/tvlsi.2008.2007564
Google Scholar
[5]
C. Ik Joon, K. Jae-Joon, S. P. Park, and K. Roy, A 32 kb 10T Sub-Threshold SRAM Array With Bit-Interleaving and Differential Read Scheme in 90 nm CMOS, Solid-State Circuits, IEEE Journal of, vol. 44 (2009), pp.650-658.
DOI: 10.1109/jssc.2008.2011972
Google Scholar
[6]
C. Meng-Fan, C. Shi-Wei, C. Po-Wei, and W. Wei-Cheng, A 130 mV SRAM With Expanded Write and Read Margins for Subthreshold Applications, Solid-State Circuits, IEEE Journal of, vol. 46 (2011), pp.520-529.
DOI: 10.1109/jssc.2010.2091321
Google Scholar
[7]
H. Mostafa, M. H. Anis, and M. Elmasry, Analytical Soft Error Models Accounting for Die-to-Die and Within-Die Variations in Sub-Threshold SRAM Cells, Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 19 (2011), pp.182-195.
DOI: 10.1109/tvlsi.2009.2033697
Google Scholar
[8]
M. Meterelliyoz, P. Song, F. Stellari, J. P. Kulkarni, and K. Roy, Characterization of Random Process Variations Using Ultralow-Power, High-Sensitivity, Bias-Free Sub-Threshold Process Sensor, Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 57 (2010).
DOI: 10.1109/tcsi.2009.2037449
Google Scholar
[9]
F. Moradi, D. Wisland, Y. Berg, S. Aunet, and C. Tuan Vu, Process variations in sub-threshold SRAM cells in 65nm CMOS, in Microelectronics (ICM), 2010 International Conference on (2010), pp.371-374.
DOI: 10.1109/icm.2010.5696164
Google Scholar
[10]
J. P. Kulkarni and K. Roy, Ultralow-Voltage Process-Variation-Tolerant Schmitt-Trigger-Based SRAM Design, Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. PP (2011), pp.1-1.
DOI: 10.1109/tvlsi.2010.2100834
Google Scholar
[11]
K. Tae-Hyoung, J. Liu, and C. H. Kim, An 8T Subthreshold SRAM Cell Utilizing Reverse Short Channel Effect for Write Margin and Read Performance Improvement, in Custom Integrated Circuits Conference (2007), pp.241-244.
DOI: 10.1109/cicc.2007.4405723
Google Scholar
[12]
N. Bai, C. Xuan, J. Yang, and L. Shi, A differential read subthreshold SRAM bitcell with self-adaptive leakage cut off scheme, in SOC Conference (SOCC), 2010 IEEE International (2010), pp.455-460.
DOI: 10.1109/socc.2010.5784678
Google Scholar
[13]
P. Yu, J. de Jesus Pineda de Gyvez, H. Corporaal, and H. Yajun, Vt balancing and device sizing towards high yield of sub-threshold static logic gates, in Low Power Electronics and Design (ISLPED), 2007 ACM/IEEE International Symposium on (2007).
DOI: 10.1145/1283780.1283857
Google Scholar